Publications by authors named "Justin Rosenthal"

Nicotinic acetylcholine receptors (nAchRs) are widely distributed within the nervous system across most animal species. Besides their well-established roles in mammalian neuromuscular junctions, studies using invertebrate models have also proven fruitful in revealing the function of nAchRs in the central nervous system. During the earlier years, both and animal studies had helped clarify the basic molecular features of the members of the nAchR gene family and illustrated their utility as targets for insecticides.

View Article and Find Full Text PDF

The construction and maturation of the postsynaptic apparatus are crucial for synapse and dendrite development. The fundamental mechanisms underlying these processes are most often studied in glutamatergic central synapses in vertebrates. Whether the same principles apply to excitatory cholinergic synapses, such as those found in the insect central nervous system, is not known.

View Article and Find Full Text PDF

Lipid shuttling between neurons and glia contributes to the development, function, and stress responses of the nervous system. To understand how a neuron acquires its lipid supply from specific lipoproteins and their receptors, we perform combined genetic, transcriptome, and biochemical analyses in the developing Drosophila larval brain. Here we report, the astrocyte-derived secreted lipocalin Glial Lazarillo (GLaz), a homolog of human Apolipoprotein D (APOD), and its neuronal receptor, the brain-specific short isoforms of Drosophila lipophorin receptor 1 (LpR1-short), cooperatively mediate neuron-glia lipid shuttling and support dendrite morphogenesis.

View Article and Find Full Text PDF

Highly motile dendritic filopodia are widely present in neurons at early developmental stages. These exploratory dynamic branches sample the surrounding environment and initiate contacts with potential synaptic partners. Although the connection between dendritic branch dynamics and synaptogenesis is well established, how developmental and activity-dependent processes regulate dendritic branch dynamics is not well understood.

View Article and Find Full Text PDF

Activity-dependent modifications strongly influence neural development. However, molecular programs underlying their context and circuit-specific effects are not well understood. To study global transcriptional changes associated with chronic elevation of synaptic activity, we performed cell-type-specific transcriptome profiling of Drosophila ventral lateral neurons (LNvs) in the developing visual circuit and identified activity-modified transcripts that are enriched in neuron morphogenesis, circadian regulation, and lipid metabolism and trafficking.

View Article and Find Full Text PDF