Publications by authors named "Justin R Halman"

Glaucoma, where increased intraocular pressure (IOP) leads to damage to the optic nerve and loss of sight, is amongst the foremost causes of irreversible blindness worldwide. In primary open angle glaucoma, the increased IOP is a result of the malfunctioning human trabecular meshwork (HTM) cells' inability to properly regulate the outflow of aqueous humor from the eye. A potential future treatment for glaucoma is to replace damaged HTM cells with a tissue-engineered substitute, thus restoring proper fluid outflow.

View Article and Find Full Text PDF

Radiation induces the generation of platelet-activating factor receptor (PAF-R) ligands, including PAF and oxidized phospholipids. Alternatively, PAF is also synthesized by the biosynthetic enzymes lysophosphatidylcholine acyltransferases (LPCATs) which are expressed by tumor cells including melanoma. The activation of PAF-R by PAF and oxidized lipids triggers a survival response protecting tumor cells from radiation-induced cell death, suggesting the involvement of the PAF/PAF-R axis in radioresistance.

View Article and Find Full Text PDF

Nucleic acid nanoparticles (NANPs) have become powerful new platforms as therapeutic and diagnostic tools due to the innate biological ability of nucleic acids to identify target molecules or silence genes involved in disease pathways. However, the clinical application of NANPs has been limited by factors such as chemical instability, inefficient intracellular delivery, and the triggering of detrimental inflammatory responses following innate immune recognition of nucleic acids. Here, we have studied the effects of altering the chemical composition of a circumscribed panel of NANPs that share the same connectivity, shape, size, charge and sequences.

View Article and Find Full Text PDF

Background: Bacterial meningitis and meningoencephalitis are associated with devastating neuroinflammation. We and others have demonstrated the importance of glial cells in the initiation of immune responses to pathogens invading the central nervous system (CNS). These cells use a variety of pattern recognition receptors (PRRs) to identify common pathogen motifs and the cytosolic sensor retinoic acid inducible gene-1 (RIG-I) is known to serve as a viral PRR and initiator of interferon (IFN) responses.

View Article and Find Full Text PDF

Programmable nucleic acid nanoparticles (NANPs) provide controlled coordination of therapeutic nucleic acids (TNAs) and other biological functionalities. Beyond multivalence, recent reports demonstrate that NANP technology can also elicit a specific immune response, adding another layer of customizability to this innovative approach. While the delivery of nucleic acids remains a challenge, new carriers are introduced and tested continuously.

View Article and Find Full Text PDF

The use of nucleic acids (RNA and DNA) offers a unique and multifunctional platform for numerous applications including therapeutics, diagnostics, nanodevices, and materials [...

View Article and Find Full Text PDF

RNA is a versatile biomaterial that can be used to engineer nanoassemblies for personalized treatment of various diseases. Despite promising advancements, the design of RNA nanoassemblies with minimal recognition by the immune system remains a major challenge. Here, an approach is reported to engineer RNA fibrous structures to operate as a customizable platform for efficient coordination of siRNAs and for maintaining low immunostimulation.

View Article and Find Full Text PDF

Infusion reactions (IRs) create a translational hurdle for many novel therapeutics, including those utilizing nanotechnology. Nucleic acid nanoparticles (NANPs) are a novel class of therapeutics prepared by rational design of relatively short oligonucleotides to self-assemble into various programmable geometric shapes. While cytokine storm, a common type of IR, has halted clinical development of several therapeutic oligonucleotides, NANP technologies hold tremendous potential to bring these reactions under control by tuning the particle's physicochemical properties to the desired type and magnitude of the immune response.

View Article and Find Full Text PDF

RNA is now widely acknowledged not only as a multifunctional biopolymer but also as a dynamic material for constructing nanostructures with various biological functions. Programmable RNA nanoparticles (NPs) allow precise control over their formulation and activation of multiple functionalities, with the potential to self-assemble in biological systems. These attributes make them attractive for drug delivery and therapeutic applications.

View Article and Find Full Text PDF

Nucleic acid nanoparticles (NANPs) have evolved as a new class of therapeutics with the potential to detect and treat diseases. Despite tremendous advancements in NANP development, their immunotoxicity, one of the major impediments in clinical translation of traditional therapeutic nucleic acids (TNAs), has never been fully characterized. Here, we describe the first systematically studied immunological recognition of 25 representative RNA and DNA NANPs selected to have different design principles and physicochemical properties.

View Article and Find Full Text PDF
Article Synopsis
  • * A set of 16 customizable nanoparticle platforms based on nucleic acids is developed, allowing for controlled self-assembly that can modulate immune responses effectively.
  • * Key properties like molecular weight, melting temperature, and half-life are identified as critical factors predicting the immunomodulatory activity of these nanoparticles, paving the way for designing new, predictable therapeutic tools.
View Article and Find Full Text PDF

Nucleic acid nanoparticles (NANPs) are an emerging class of programmable structures with tunable shape and function. Their promise as tools for fundamental biophysics studies, molecular sensing, and therapeutic applications necessitates methods for their detection and characterization at the single-particle level. In this work, we study electrophoretic transport of individual ring-shaped and cube-shaped NANPs through solid-state nanopores.

View Article and Find Full Text PDF

We introduce a new concept that utilizes cognate nucleic acid nanoparticles which are fully complementary and functionally-interdependent to each other. In the described approach, the physical interaction between sets of designed nanoparticles initiates a rapid isothermal shape change which triggers the activation of multiple functionalities and biological pathways including transcription, energy transfer, functional aptamers and RNA interference. The individual nanoparticles are not active and have controllable kinetics of re-association and fine-tunable chemical and thermodynamic stabilities.

View Article and Find Full Text PDF

Members of the transforming growth factor beta (TGFβ) cytokine family have long been associated with affecting several cellular functions, including cell proliferation, differentiation and extracellular matrix (ECM) turnover. Of particular interest to this work, TGFβ2 has been linked to most types of glaucomas as a potential fibrotic agent that can cause elevation of intraocular pressure (IOP). Given that the trabecular meshwork (TM) provides most of aqueous humor outflow resistance in the eye, an in vitro bioengineered human TM (HTM) model has been created and validated by analyzing effects of TGFβ2 on transcellular pressure changes and outflow facility.

View Article and Find Full Text PDF

Intraocular pressure (IOP) is mostly regulated by aqueous humor outflow through the human trabecular meshwork (HTM) and represents the only modifiable risk factor of glaucoma. The lack of IOP-modulating therapeutics that targets HTM underscores the need of engineering HTM for understanding the outflow physiology and glaucoma pathology in vitro. Using a 3D HTM model that allows for regulation of outflow in response to a pharmacologic steroid, a fibrotic state has been induced resembling that of glaucomatous HTM.

View Article and Find Full Text PDF