Publications by authors named "Justin Pedro"

Fast T-scanning (transverse scanning, en-face) was used to build B-scan or C-scan optical coherence tomography (OCT) images of the retina. Several unique signature patterns of en-face (coronal) are reviewed in conjunction with associated confocal images of the fundus and B-scan OCT images. Benefits in combining T-scan OCT with confocal imaging to generate pairs of OCT and confocal images similar to those generated by scanning laser ophthalmoscopy (SLO) are discussed in comparison with the spectral OCT systems.

View Article and Find Full Text PDF

Purpose: To evaluate how information from combined coronal optical coherence tomography (OCT) and confocal laser scanning ophthalmoscopy (SLO) with integrated simultaneous indocyanine green (ICG) dye angiography can be used in the diagnosis of a variety of macular diseases.

Methods: A compact chin-rest-based OCT/confocal imaging system was used to produce the OCT image and excite the fluorescence in the ICG dye. The same eye fundus area can be visualized with coronal (C-scans, en face) OCT and ICG angiography simultaneously.

View Article and Find Full Text PDF

A versatile time-domain optical coherence tomography system is presented that can generate cross-sectional images by using either transverse priority or depth priority scanning. This is made possible by using a transmissive scanning delay line compatible with balance detection operating at a speed similar to that of the transverse scanner used to scan the beam across the target. In vivo images from the retina are generated and shown using the same system switched to either transverse or depth priority scanning regime, by using the scanning delay line either in slow or fast scanning modes, respectively.

View Article and Find Full Text PDF

We develop a dual-channel optical coherence tomography/indocyanine green (OCT/ICG) fluorescence system based on our previously reported ophthalmic OCT/confocal imaging system. The confocal channel is tuned to the fluorescence wavelength range of the ICG dye and light from the same optical source is used to generate the OCT image and to excite the ICG fluorescence. The system enables the clinician to visualize simultaneously en face OCT slices and corresponding ICG angiograms of the ocular fundus, displayed side by side.

View Article and Find Full Text PDF

Combined confocal scanning ophthalmoscopy/en face T-scan-based ultrahigh-resolution optical coherence tomography (OCT) of the human retina in vivo is reported for the first time to our knowledge. The system uses a superluminescent diode-based broadband source, which gives an axial resolution of 3.2 microm in the retina.

View Article and Find Full Text PDF

Optical Coherence Tomography (OCT) is an optical interferometric technique developed mainly for in vivo imaging of the eye and biological tissues. In this paper, we demonstrate the potential of OCT for non-invasive examination of museum paintings. Two en-face scanning OCT systems operating at 850 nm and 1300 nm were used to produce B-scan and C-scan images at typical working distances of 2 cm.

View Article and Find Full Text PDF