Translocation and colocalization of mechanistic target of rapamycin complex 1 (mTORC1) with regulatory proteins represents a critical step in translation initiation of protein synthesis in vitro. However, mechanistic insight into the control of postprandial skeletal muscle protein synthesis rates at rest and after an acute bout of endurance exercise in humans is lacking. In crossover trials, eight endurance-trained men received primed-continuous infusions of L-[ring- H ]phenylalanine and consumed a mixed-macronutrient meal (18 g protein, 60 g carbohydrates, 17 g fat) at rest (REST) and after 60 min of treadmill running at 70% VO (EX).
View Article and Find Full Text PDFPurpose: Endurance exercise increases indices of small intestinal damage and leucine oxidation, which may attenuate dietary amino acid appearance and postprandial leucine balance during postexercise recovery. Therefore, the purpose of this study was to examine the effect of an acute bout of endurance exercise on postprandial leucine kinetics and net leucine balance.
Methods: In a crossover design, seven trained young men (age = 25.
Circulating progenitor cells (CPCs) are a heterogeneous population of stem/progenitor cells in peripheral blood that includes hematopoietic stem and progenitor cells (HSPCs and HSCs), endothelial progenitor cells (EPCs), and mesenchymal stem cells (MSCs) that are involved in tissue repair and adaptation. CPC mobilization during exercise remains uncharacterized in young adults. The purpose of this study was to investigate the kinetics of CPC mobilization during and after submaximal treadmill running and their relationship to mobilization factors.
View Article and Find Full Text PDFBackground: Stable isotope amino acids are regularly used as tracers to examine whole-body and muscle protein metabolism in humans. To accurately assess in vivo dietary protein digestion and absorption kinetics, the amino acid tracer is required to be incorporated within the dietary protein food source (i.e.
View Article and Find Full Text PDF