By anchoring metal complexes to supports, researchers have attempted to combine the high activity and selectivity of molecular homogeneous catalysis with the ease of separation and lack of corrosion of heterogeneous catalysis. However, the intrinsic nonuniformity of supports has limited attempts to make supported catalysts truly uniform. We report the synthesis and performance of such a catalyst, made from [Rh(C(2)H(4))(2)(CH(3)COCHCOCH(3))] and a crystalline support, dealuminated Y zeolite, giving {Rh(C(2)H(4))(2)} groups anchored by bonds to two zeolite oxygen ions, with the structure determined by extended X-ray absorption fine structure (EXAFS) spectroscopy and the uniformity of the supported complex demonstrated by (13)C NMR spectroscopy.
View Article and Find Full Text PDFWe report a two-step postsynthetic functionalization reaction of zeolite HZSM-5 that proceeds with high selectivity at room temperature. In the first step the framework acid sites of the zeolite are reacted with phenylsilane to replace the acidic proton with a hydrosilyl (-SiH3) group covalently linked to the framework. This group readily couples to acetone in a second step to form a framework-bound hydrosilyl isopropyl ether that is thermally stable at 473 K, but decomposes in the presence of moisture.
View Article and Find Full Text PDFPhosphorus modification of a HZSM-5 (MFI) zeolite by wet impregnation has long been known to decrease aromatic formation in methanol conversion chemistry. We prepared and studied a catalyst modified by introducing trimethylphosphine under reaction conditions followed by oxidation. Magic-angle spinning (MAS) NMR shows that extensive dealumination occurs, resulting in a catalyst with a much higher framework SiO2/Al2O3 ratio, as well as extraframework aluminum and approximately 1.
View Article and Find Full Text PDFMononuclear rhodium complexes with reactive olefin ligands, supported on MgO powder, were synthesized by chemisorption of Rh(C(2)H(4))(2)(C(5)H(7)O(2)) and characterized by infrared (IR), (13)C MAS NMR, and extended X-ray absorption fine structure (EXAFS) spectroscopies. IR spectra show that the precursor adsorbed on MgO with dissociation of acetylacetonate ligand from rhodium, with the ethylene ligands remaining bound to the rhodium, as confirmed by the NMR spectra. EXAFS spectra give no evidence of Rh-Rh contributions, indicating that site-isolated mononuclear rhodium species formed on the support.
View Article and Find Full Text PDFThe reaction of Rh(C2H4)2(acac) with the partially dehydroxylated surface of dealuminated zeolite Y (calcined at 773 K) and treatments of the resultant surface species in various atmospheres (He, CO, H2, and D2) were investigated with infrared (IR), extended X-ray absorption fine structure (EXAFS), and 13C NMR spectroscopies. The IR spectra show that Rh(C2H4)2(acac) reacted readily with surface OH groups of the zeolite, leading to loss of acac ligands from the Rh(C2H4)2(acac) and formation of supported mononuclear rhodium complexes, confirmed by the lack of Rh-Rh contributions in the EXAFS spectra; each Rh atom was bonded on average to two oxygen atoms of the zeolite surface with a Rh-O distance of 2.19 A.
View Article and Find Full Text PDFAssessing the degree of proton transfer from a Brønsted acid site to one or more adsorbed bases is central to arguments regarding the strength of zeolites and other solid acids. In this regard certain solid-state NMR measurements have been fruitful; for example, some (13)C, (15)N, or (31)P resonances of adsorbed bases are sensitive to protonation, and the (1)H chemical shift of the Brønsted site itself reflects hydrogen bonding. We modeled theoretically the structures of adsorption complexes of several bases on zeolite HZSM-5, calculated the quadrupole coupling constants (Q(cc)) and asymmetry parameters (eta) for aluminum in these complexes and then in turn simulated the central transitions of their (27)Al MAS NMR spectra.
View Article and Find Full Text PDFUsing highly purified reagents and careful tests, we show that methanol and dimethyl ether are apparently unreactive on the two most important methanol-to-hydrocarbon catalysts, HZSM-5 and HSAPO-34. Thus, none of the "direct" mechanisms involving two to four carbon atoms in intermediates such as oxonium ylides, carbenes, carbocations, and free radicals are applicable. Only the "indirect" route (hydrocarbon pool) is an established mechanism for this chemistry.
View Article and Find Full Text PDF