Californium (Cf) is currently the heaviest element accessible above microgram quantities. Cf isotopes impose severe experimental challenges due to their scarcity and radiological hazards. Consequently, chemical secrets ranging from the accessibility of 5f/6d valence orbitals to engage in bonding, the role of spin-orbit coupling in electronic structure, and reactivity patterns compared to other f elements, remain locked.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
April 2021
New syntheses have been developed for the synthesis of (borohydrido-κ )tris-[η-(tri-methyl-sil-yl)cyclo-penta-dien-yl]uranium(IV), [U(BH)(CHSi)] or Cp'U(BH) (Cp' = CHSiMe) and its structure has been determined by single-crystal X-ray crystallography. This compound crystallized in the space group and the structure features three -coordinated Cp' rings and a -coordinated (BH) ligand.
View Article and Find Full Text PDFA series of trivalent f-block tungstates, MWO(OH)(HO) (M = La, Ce, Pr, Nd, and Pu) and AmWO(OH), have been prepared in crystalline form using hydrothermal methods. Both structure types take the form of 3D networks where MWO(OH)(HO) is assembled from infinite chains of distorted tungstate octahedra linked by isolated MO bicapped trigonal prisms; whereas AmWO(OH) is constructed from edge-sharing AmO square antiprisms connected by distorted tungstate trigonal bipyramids. PuWO(OH)(HO) crystallizes as red plates; an atypical color for a Pu(iii) compound.
View Article and Find Full Text PDFElectron transfer in mixed-valent transition-metal complexes, clusters and materials is ubiquitous in both natural and synthetic systems. The degree to which intervalence charge transfer (IVCT) occurs, dependent on the degree of delocalization, places these within class II or III of the Robin-Day system. In contrast to the d-block, compounds of f-block elements typically exhibit class I behaviour (no IVCT) because of localization of the valence electrons and poor spatial overlap between metal and ligand orbitals.
View Article and Find Full Text PDFDeveloping a better understanding of covalency (or orbital mixing) is of fundamental importance. Covalency occupies a central role in directing chemical and physical properties for almost any given compound or material. Hence, the concept of covalency has potential to generate broad and substantial scientific advances, ranging from biological applications to condensed matter physics.
View Article and Find Full Text PDFOver 70 years of chemical investigations have shown that plutonium exhibits some of the most complicated chemistry in the periodic table. Six Pu oxidation states have been unambiguously confirmed (0 and +3 to +7), and four different oxidation states can exist simultaneously in solution. We report a new formal oxidation state for plutonium, namely Pu in [K(2.
View Article and Find Full Text PDFAdvancing our understanding of the minor actinides (Am, Cm) versus lanthanides is key for developing advanced nuclear-fuel cycles. Herein, we describe the preparation of (NBu4 )Am[S2 P((t) Bu2 C12 H6 )]4 and two isomorphous lanthanide complexes, namely one with a similar ionic radius (i.e.
View Article and Find Full Text PDFActinium-225 is a promising isotope for targeted-α therapy. Unfortunately, progress in developing chelators for medicinal applications has been hindered by a limited understanding of actinium chemistry. This knowledge gap is primarily associated with handling actinium, as it is highly radioactive and in short supply.
View Article and Find Full Text PDFThe synthesis, electronic structure, and characterization via single-crystal X-ray diffraction, nuclear magnetic resonance (NMR) spectroscopy, and magnetic susceptibility of (Me4N)2PuCl6 are reported. NMR measurements were performed to both search for the direct (239)Pu resonance and to obtain local magnetic and electronic information at the Cl site through (35)Cl and (37)Cl spectra. No signature of (239)Pu NMR was observed.
View Article and Find Full Text PDFThe complexation of UO2(2+) by formohydroxamate (FHA(-)) creates solutions with dark red coloration. The inherent redox activity of formohydroxamate leads to the possibility that these solutions contain U(V) complexes, which are often red. We demonstrate that the reaction of U(VI) with formohydroxamate does not result in reduction, but rather in formation of the putative cis-aquo UO2(FHA)2(H2O)2, whose polymeric solid-state structure, UO2(FHA)2, contains an unusually bent UO2(2+) unit and a highly distorted coordination environment around a U(VI) cation in general.
View Article and Find Full Text PDFA break in periodicity occurs in the actinide series between plutonium and americium as the result of the localization of 5f electrons. The subsequent chemistry of later actinides is thought to closely parallel lanthanides in that bonding is expected to be ionic and complexation should not substantially alter the electronic structure of the metal ions. Here we demonstrate that ligation of californium(III) by a pyridine derivative results in significant deviations in the properties of the resultant complex with respect to that predicted for the free ion.
View Article and Find Full Text PDFThe reactions of simple oxides or halides of trivalent lanthanides and actinides or bismuth with boric acid in the ionic liquid 1-butyl-3-methylimidazolium chloride at 150 °C result in the formation and crystallization of a series of isomorphous tetranuclear borate clusters with the general formula M4B22O36(OH)6(H2O)13 (M = La, Ce, Pr, Nd, Sm, Eu, Gd, Pu, and Bi). These clusters do not assemble with trivalent cations smaller than Gd(3+), suggesting that the formation of the clusters is dictated by the size of the metal ion. The cations are found in cavities along the periphery of a cage assembled from the corner- and edge-sharing interactions of BO3 triangles and BO4 tetrahedra, yielding a complex chiral cluster.
View Article and Find Full Text PDFSix new lanthanide tellurium vanadates with the general formula LnV3Te3O15(OH)3·nH2O (LnVTeO) (Ln = Ce, Pr, Nd, Sm, Eu, and Gd; n = 2 for Ce and Pr; n = 1 for Nd, Sm, Eu, and Gd) have been prepared hydrothermally via the reactions of lanthanide nitrates, TeO2, and V2O5 at 230 °C. LnVTeO adopts a three-dimensional (3D) channel structure with a space group of P63/mmc. Surprisingly, two types of oxoanions: Te(IV)O3(2-) trigonal pyramids and Te(VI)O6(6-) octahedra, coexist in these compounds.
View Article and Find Full Text PDFThe reactions of trivalent lanthanides and actinides with molten boric acid in high chloride concentrations result in the formation of M4[B16O26(OH)4(H2O)3Cl4] (M = Sm, Eu, Gd, Pu, Am, Cm, Cf). This cubic structure type is remarkably complex and displays both chirality and polarity. The polymeric borate network forms helical features that are linked via two different types of nine-coordinate f-element environments.
View Article and Find Full Text PDFTwo new neptunium selenites with different oxidation states of the metal centers, Np(IV)(SeO3)2 and Np(VI)O2(SeO3), have been synthesized under mild hydrothermal conditions at 200 °C from the reactions of NpO2 and SeO2. Np(SeO3)2 crystallizes as brown prisms (space group P21/n, a = 7.0089(5) Å, b = 10.
View Article and Find Full Text PDFStudies of trivalent uranium (U(3+)) and neptunium (Np(3+)) are restricted by the tendency of these ions to oxidize in the presence of air and water, requiring manipulations to be carried out in inert conditions to produce trivalent products. While the organometallic and high-temperature reduction chemistry of U(3+) and, to a much smaller extent, Np(3+) has been explored, the study of the oxoanion chemistry of these species has been limited despite their interesting optical and magnetic properties. We report the synthesis of U(3+) and Np(3+) sulfates by utilizing zinc amalgam as an in situ reductant with absolutely no regard to the exclusion of O2 or water.
View Article and Find Full Text PDFTwo complex layered uranyl borates, K10[(UO2)16(B2O5)2(BO3)6O8]·7H2O (1) and K13[(UO2)19(UO4)(B2O5)2(BO3)6(OH)2O5]·H2O (2), were isolated from supercritical water reactions. Within these compounds, borate exists only as BO3 units and is found as either isolated BO3 triangles or B2O5 dimers, the latter being formed from corner sharing of two BO3 units. These anions, along with oxide and hydroxide, bridge between uranyl centers to create the complex layers in these compounds.
View Article and Find Full Text PDFThe participation of the valence orbitals of actinides in bonding has been debated for decades. Recent experimental and computational investigations demonstrated the involvement of 6p, 6d and/or 5f orbitals in bonding. However, structural and spectroscopic data, as well as theory, indicate a decrease in covalency across the actinide series, and the evidence points to highly ionic, lanthanide-like bonding for late actinides.
View Article and Find Full Text PDFSynthesis of a plutonium(III) molybdate bromide, PuMoO4Br(H2O), has been accomplished using hydrothermal techniques in an inert-atmosphere glovebox. The compound is green in color, which is in stark contrast to the typical blue color of plutonium(III) complexes. The unusual color arises from the broad charge transfer (CT) spanning from approximately 300 to 500 nm in the UV-vis-near-IR spectra.
View Article and Find Full Text PDFTh(VO3)2(SeO3) and Ln(VO3)2(IO3) (Ln = Ce, Pr, Nd, Sm, and Eu) have been prepared and characterized. Surprisingly, these compounds are isotypic and rather extreme examples of aliovalent substitution (Th(IV)vs. Ln(III); Se(IV)O3(2-)vs.
View Article and Find Full Text PDFA 3d-4f heterobimetallic material with mixed anions, Ho2Cu(TeO3)2(SO4)2, has been prepared under hydrothermal conditions. Ho2Cu(TeO3)2(SO4)2 exhibits both thermochromism and the Alexandrite effect. Variable temperature single crystal X-ray diffraction and UV-vis-NIR spectroscopy reveal that changes in the Cu(II) coordination geometry result in negative thermal expansion of axial Cu-O bonds that plays a role in the thermochromic transition of Ho2Cu(TeO3)2(SO4)2.
View Article and Find Full Text PDFA new divalent europium borate, Eu[B8O11(OH)4], was synthesized by two different in situ reductive methodologies starting with a trivalent europium starting material in a molten boric acid flux. The two in situ reductive techniques employed were the use of HI as a source of H2 gas and the use of a Zn amalgam as a reductive, reactive surface. While both of these are known reductive techniques, the title compound was synthesized in both air and water which demonstrates that strict anaerobic conditions need not be employed in conjunction with these reductive methodologies.
View Article and Find Full Text PDFThe hydrothermal reaction of PuCl3 or CeCl3 with TeO2 in the presence of sulfuric acid under the comparable conditions results in the crystallization of Pu(TeO3)(SO4) or Ce2(Te2O5)(SO4)2, respectively. Pu(TeO3)(SO4) and its isotypic compound Th(TeO3)(SO4) are characterized by a neutral layer structure with no interlamellar charge-balancing ions. However, Ce2(Te2O5)(SO4)2 possesses a completely different dense three-dimensional framework.
View Article and Find Full Text PDF