Riverine cyanobacterial blooms are increasing worldwide and are driven in large part by eutrophication. Despite substantial data on nutrient/bloom relationships in lakes and reservoirs, our understanding of nutrient mechanisms driving cyanobacterial blooms in rivers remains limited as rivers can have more complex temporal and spatial nutrient delivery. This study investigated how nutrient conditions influence cyanobacterial dominance and microcystin production in river phytoplankton.
View Article and Find Full Text PDFAgricultural runoff often contains pollutants with antagonistic impacts. The individual influence of nutrients and atrazine on periphyton has been extensively studied, but their impact when introduced together and with multiple agricultural pollutants is less clear. We simulated a field-scale runoff pulse into a riverine wetland that mimicked pollutant composition typical of field runoff of the Mississippi River Alluvial Plain.
View Article and Find Full Text PDFWe examined the mitigation efficiency of a managed riverine wetland amended with a mixture of suspended sediment, two nutrients (nitrogen and phosphorus), and three pesticides (atrazine, metolachlor, and permethrin) during a simulated agricultural runoff event. Hydrologic management of the 500 m-long, 25 m-wide riverine wetland was done by adding weirs at both ends. The agrichemical mixture was amended to the wetland at the upstream weir simulating a four-hour, ~1cm rainfall event from a 16ha agricultural field.
View Article and Find Full Text PDFWe assessed the aqueous toxicity mitigation capacity of a hydrologically managed floodplain wetland following a synthetic runoff event amended with a mixture of sediments, nutrients (nitrogen and phosphorus), and pesticides (atrazine, S-metolachlor, and permethrin) using 48-h Hyalella azteca survival and phytoplankton pigment, chlorophyll a. The runoff event simulated a 1h, 1.27 cm rainfall event from a 16 ha agricultural field.
View Article and Find Full Text PDFPollutant effects on biofilm physiology are difficult to assess due to differential susceptibility of species and difficulty separating individual species for analysis. Also, measuring whole assemblage responses such as metabolism can mask species-specific responses, as some species may decrease and others increase metabolic activity. Physiological responses can add information to compositional data, and may be a more sensitive indicator of effect.
View Article and Find Full Text PDFConsumers are increasingly being recognized as important drivers of ecological succession, yet it is still hard to predict the nature and direction of consumer effects in nonequilibrium environments. We used stream consumer exclosures and large outdoor mesocosms to study the impact of macroconsumers (i.e.
View Article and Find Full Text PDF