Background: Acute Myeloid Leukemia (AML) is a malignancy of myeloid precursor cells that arise from genomic alterations in the expression of key growth regulatory genes causing cells to assume an undifferentiated state and continue to proliferate. Recent efforts have focused on developing therapies that target specific protein products of aberrantly expressed genes. However, many of the identified proteins are difficult to target and thought to be "undrugable" because of structural challenges, protein overexpression, or mutations that confer resistance to therapy.
View Article and Find Full Text PDFFocal adhesion kinase (FAK) is a promising cancer drug target due to its massive overexpression in multiple solid tumors and its critical role in the integration of signals that control proliferation, invasion, apoptosis, and metastasis. Previous FAK drug discovery and high-throughput screening have exclusively focused on the identification of inhibitors that target the kinase domain of FAK. Because FAK is both a kinase and scaffolding protein, the development of novel screening assays that detect inhibitors of FAK protein-protein interactions remains a critical need.
View Article and Find Full Text PDFRNAi screening of mammalian cells is often performed using siRNAs and cationic lipids as transfection reagents. Efficiency of transfection depends on growth characteristics of the cells and the cationic lipid used. With a large selection of cationic lipids available, it can often be difficult to select the optimal lipid and lipid:siRNA (vol:wt) ratio.
View Article and Find Full Text PDF