Cleavage of the innate immune receptor NLRP1B by various microbial proteases causes the proteasomal degradation of its N-terminal fragment and the subsequent release of a C-terminal fragment that forms an inflammasome. We reported previously that metabolic stress caused by intracellular bacteria triggers NLRP1B activation, but the mechanism by which this occurs was not elucidated. Here we demonstrate that TLR4 signaling in metabolically stressed macrophages promotes the formation of a TRIF/RIPK1/caspase-8 complex.
View Article and Find Full Text PDFThe intestinal mucosa must balance tolerance to commensal microbes and luminal antigens with rapid detection of enteric pathogens in order to maintain homeostasis. This balance is facilitated through the regulation of epithelial layer integrity by innate immune receptors. Certain NOD-like receptors (NLRs) expressed in intestinal epithelial cells, including NLRC4 and NLRP9B, form inflammasomes that protect against pathogens by activating caspase-1 to cause extrusion of infected cells.
View Article and Find Full Text PDFAs a critical component in the PI3K/AKT/mTOR pathway, AKT has become an attractive target for therapeutic intervention. ARQ 092 and a next generation AKT inhibitor, ARQ 751 are selective, allosteric, pan-AKT and AKT1-E17K mutant inhibitors that potently inhibit phosphorylation of AKT. Biochemical and cellular analysis showed that ARQ 092 and ARQ 751 inhibited AKT activation not only by dephosphorylating the membrane-associated active form, but also by preventing the inactive form from localizing into plasma membrane.
View Article and Find Full Text PDF