Wearable devices for continuous monitoring of arterial pulse waves have the potential to improve the diagnosis, prognosis, and management of cardiovascular diseases. These pulse wave signals are often affected by the contact pressure between the wearable device and the skin, limiting the accuracy and reliability of hemodynamic parameter quantification. Here, we report a continuous hemodynamic monitoring device that enables the simultaneous recording of dual-channel bioimpedance and quantification of pulse wave velocity (PWV) used to calculate blood pressure (BP).
View Article and Find Full Text PDFContinuous monitoring of arterial blood pressure is clinically important for the diagnosis and management of cardiovascular diseases. Soft electronic devices with skin-like properties show promise in a wide range of applications, including the human-machine interface, the Internet of things, and health monitoring. Here, we report the use of add-on soft electronic interfaces to address the connection challenges between soft electrodes and rigid data acquisition circuitry for bioimpedance monitoring of cardiac signals, including heart rate and cuffless blood pressure.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2018
Robust sensing is one of the main challenges for wearable physiological monitoring because of the high dependency on the placement of electrodes on the body, retaining suitable contact between electrodes and skin, and the effect of motion artifacts. In this paper, we present a wrist-worn strap that includes a 2-D array of 48 miniature electrodes covering the bottom side of the wrist with good contact with the skin. Good skin contact directly impacts the sensing robustness.
View Article and Find Full Text PDF