SARS-CoV-2 cell-cell fusion and syncytiation is an emerging pathomechanism in COVID-19, but the precise factors contributing to the process remain ill-defined. In this study, we show that metalloproteases promote SARS-CoV-2 spike protein-induced syncytiation in the absence of established serine proteases using cell-cell fusion assays. We also show that metalloproteases promote S2'-activation of the SARS-CoV-2 spike protein, and that metalloprotease inhibition significantly reduces the syncytiation of SARS-CoV-2 variants of concern.
View Article and Find Full Text PDFThe epithelial cell adhesion molecule (EpCAM) is a transmembrane cell adhesion glycoprotein, which primarily contributes to stemness, proliferation, and metastasis properties of tumor cells. Regulated intramembrane proteolysis by ADAM proteases and γ-secretase cleaves EpCAM into an ∼27 kDa soluble extracellular and an ∼4 kDa cytoplasmic domain (EpICD). After the EpICD fragment is released inside the cell, the formation of a nuclear signaling complex with the FHL2 molecule is critical for exerting its regulatory role.
View Article and Find Full Text PDFMore than 1.8 million cancer diagnoses will be made in 2020 driving substantial health and economic burden for patients. The financial impact of out-of-pocket payments for hospital stays, outpatient services, physician appointments, and prescription drugs is a particular challenge.
View Article and Find Full Text PDFMultiple studies have identified that complement becomes activated during inflammation of the intestines yet it is unclear what roles the split complement molecules play. The epithelium, in particular, may be impacted and accordingly, we first discovered that colonic cell lines indeed possess the C5aR. Here we examined whether these cells also possess the C3aR.
View Article and Find Full Text PDFUnlabelled: The risk for breast and colon cancer may be lowered in part by high intake of fruits and vegetables. Fruits such as grapes are abundant in bioactive compounds such as anthocyanins. The potential anticancer activity of anthocyanins may be limited by their metabolism in the gut and liver.
View Article and Find Full Text PDFReceptor signalling events including those initiated following activation of cytokine and growth factor receptors and the well-characterised death receptors (tumour necrosis factor receptor, type 1, FasR and TRAIL-R1/2) are initiated at the cell surface through the recruitment and formation of intracellular multiprotein signalling complexes that activate divergent signalling pathways. Over the past decade, research studies reveal that many of these receptor-initiated signalling events involve the sequential proteolysis of specific receptors by membrane-bound proteases and the γ-secretase protease complexes. Proteolysis enables the liberation of soluble receptor ectodomains and the generation of intracellular receptor cytoplasmic domain fragments.
View Article and Find Full Text PDFAm Soc Clin Oncol Educ Book
December 2017
The median price of a month of chemotherapy has increased by an order of magnitude during the past 20 years, far exceeding inflation over the same period. Along with rising prices, increases in cost sharing have forced patients to directly shoulder a greater portion of those costs, resulting in undue financial burden and, in some cases, cost-related nonadherence to treatment. What can we do to intervene on treatment-related financial toxicity of patients? No one party can single-handedly solve the problem, and the solution must be multifaceted and creative.
View Article and Find Full Text PDFThe γ-secretase protease and associated regulated intramembrane proteolysis play an important role in controlling receptor-mediated intracellular signaling events, which have a central role in Alzheimer disease, cancer progression, and immune surveillance. An increasing number of γ-secretase substrates have a role in cytokine signaling, including the IL-6 receptor, IL-1 receptor type I, and IL-1 receptor type II. In this study, we show that following TNF-converting enzyme-mediated ectodomain shedding of TNF type I receptor (TNFR1), the membrane-bound TNFR1 C-terminal fragment is subsequently cleaved by γ-secretase to generate a cytosolic TNFR1 intracellular domain.
View Article and Find Full Text PDFThe presenilins are the catalytic subunit of the membrane-embedded tetrameric γ-secretase protease complexes. More that 90 transmembrane proteins have been reported to be γ-secretase substrates, including the widely studied amyloid precursor protein (APP) and the Notch receptor, which are precursors for the generation of amyloid-β peptides and biologically active APP intracellular domain (AICD) and Notch intracellular domain (NICD). The diversity of γ-secretase substrates highlights the importance of presenilin-dependent γ-secretase protease activities as a regulatory mechanism in a range of biological systems.
View Article and Find Full Text PDFThe p75 neurotrophin receptor (p75(NTR)) undergoes γ-secretase-mediated regulated intramembrane proteolysis and is involved in glioblastoma cell migration and invasion. Consistent with previous reports, in this study we show that p75NTR increases U87-MG glioblastoma cell migration, which is reversed by inhibition of γ-secretase activity. However, we show that expression or stabilization of the γ-secretase-generated p75(NTR) intracellular domain (ICD) is not sufficient to induce U87-MG glioblastoma cell migration, and that exogenous expression of p75(NTR) ICD inhibits p75(NTR)-mediated glioblastoma cell (U87-MG and U373-MG) migration.
View Article and Find Full Text PDFThe importance of presenilin-dependent γ-secretase protease activities in the development, neurogenesis, and immune system is highlighted by the diversity of its substrates and characterization of Psen1- and Psen2-deficient transgenic animals. Functional differences between presenilin 1 (PS1) and presenilin 2 (PS2) are incompletely understood. In this study, we have identified a Psen2-specific function, not shared by Psen1 in Toll-like receptor signaling.
View Article and Find Full Text PDFThe presenilins (PS1 and PS2) are the catalytic component of the γ-secretase intramembrane protease complex, involved in the regulated intramembrane proteolysis of numerous type I transmembrane proteins, including amyloid precursor protein (APP) and Notch. Herein, we describe the identification and characterization of a CUE (coupling of ubiquitin conjugation to endoplasmic reticulum degradation) ubiquitin-binding domain (UBD) in PS1, and demonstrate that the CUE domain of PS1 mediates non-covalent binding to Lysine 63-linked polyubiquitin chains. Our results highlight a γ-secretase-independent function for non-covalent ubiquitin signaling in the regulation of PS1, and add new insights into the structure and function of the presenilin proteins.
View Article and Find Full Text PDFMutations in presenilins (PS1 and PS2) have been linked to the pathogenesis of early onset familial Alzheimer's disease. Presenilins function as the catalytic component of the γ-secretase protease complexes responsible for the cleavage of the amyloid precursor protein (APP), subsequent generation of amyloid-β and associated amyloid plaques in Alzheimer's disease. Biochemical and genetic studies have revealed that through interactions with several proteins, the presenilins are functionally involved in a range of cellular processes, including the regulation of intracellular calcium homeostasis.
View Article and Find Full Text PDFObjectives: Semagacestat, is a γ-secretase inhibitor, which belongs to a class of drugs that are being developed as therapeutic agents for Alzheimer's disease (AD). This study aims to evaluate another potential effect of semagacestat, namely its ability to stimulate the growth hormone secretagogue receptor (GHS-R1a), which may also contribute to its therapeutic efficacy.
Methods: The GHS-R1a-activating potential of semagacestat and its synthetic precursor was assessed in an in vitro calcium mobilization assay in cells expressing the GHS-R1a receptor and compared with that of the endogenous peptide GHS-R1a agonist, acyl-ghrelin, as well as the non-peptidyl synthetic GHS-R1a agonist, MK0677.
Biochem Biophys Res Commun
April 2009
It has recently been shown that Interleukin-1 receptor, type 1, an essential regulator of inflammation and inate immunity, undergoes regulated intramembrane proteolysis (RIP). Although IL-1R1-mediated intracellular signalling has been well studied, very little is known about how RIP of IL-1R1 is modulated. In this study, by using wild-type TRAF6 and TRAF6 mutants that are defective in its ubiquitin ligase activity, we show for the first time that TRAF6 induces ubiquitination of IL-1R1.
View Article and Find Full Text PDFThe p75 neurotrophin receptor (p75(NTR)) is a member of the tumour necrosis factor superfamily, which relies on the recruitment of cytosolic protein partners including the tumour necrosis factor receptor-associated factor 6 (TRAF6) E3 ubiquitin ligase to produce cellular responses. Recently, p75(NTR) was also shown to undergo presenilin-dependent, gamma-secretase-mediated regulated intramembrane proteolysis. In this study, we report the characterization of a highly conserved TRAF6-binding site (PxExxAr/Ac) in presenilin-1 (PS1) that mediates nerve growth factor (NGF)-induced association between PS1 and TRAF6.
View Article and Find Full Text PDFBiochemical and genetic studies have revealed that the presenilins interact with several proteins and are involved in the regulated intramembrane proteolysis of numerous type 1 membrane proteins, thereby linking presenilins to a range of cellular processes. In this study, we report the characterization of a highly conserved tumor necrosis factor receptor-associated factor-6 (TRAF6) consensus-binding site within the hydrophilic loop domain of presenilin-1 (PS-1). In coimmunoprecipitation studies we indicate that presenilin-1 interacts with TRAF6 and interleukin-1 receptor-associated kinase 2.
View Article and Find Full Text PDFSeveral type-1 membrane proteins undergo regulated intramembrane proteolysis resulting in the generation of biologically active protein fragments. Presenilin-dependant gamma-secretase activity is central to this event and includes amyloid precursor protein (APP), Notch and ErbB4 as substrates. Here we show that the insulin-like growth factor 1 receptor (IGF-IR) undergoes regulated intramembrane proteolysis.
View Article and Find Full Text PDFPreviously we described presenilin-1 (PS1) as a GSK-3beta substrate [Kirschenbaum, F., Hsu, S.C.
View Article and Find Full Text PDFApoptosis is an evolutionarily conserved process used by multicellular organisms to developmentally regulate cell number or to eliminate cells that are potentially detrimental to the organism. The large diversity of regulators of apoptosis in mammalian cells and their numerous interactions complicate the analysis of their individual functions, particularly in development. The remarkable conservation of apoptotic mechanisms across species has allowed the genetic pathways of apoptosis determined in lower species, such as the nematode Caenorhabditis elegans and the fruitfly Drosophila melanogaster, to act as models for understanding the biology of apoptosis in mammalian cells.
View Article and Find Full Text PDFInt J Geriatr Psychiatry
December 2002
Prostate apoptosis response factor-4 (Par-4) is critical to cell growth and apoptosis. Induction of Par-4 expression has been shown to be required for apoptosis in a diversity of cellular systems, including neurons. Neuronal populations in individuals with degenerative disorders show elevated levels of Par-4 protein in advance of cellular and functional loss.
View Article and Find Full Text PDF