Publications by authors named "Justin M Pare"

Argonaute 2 (Ago2) protein is a central effector of RNA interference (RNAi) pathways and regulates mammalian genes on a global level. The mechanisms of Ago2-mediated silencing are well understood, but less is known about its regulation. Recent reports indicate that phosphorylation significantly affects Ago2 activity.

View Article and Find Full Text PDF

Establishing lifelong infection and periodically shedding infectious progeny is a successful strategy employed by several persistent pathogens. In this issue of Cell Host & Microbe, Pan et al. (2014) demonstrate that a cell-type-specific host microRNA can restrict gene expression and pathogenicity of herpes simplex virus 1, thereby promoting long-term infection.

View Article and Find Full Text PDF

RNA interference (RNAi) is an established antiviral defense mechanism in plants and invertebrates. Whether RNAi serves a similar function in mammalian cells remains unresolved. We find that in some cell types, mammalian RNAi activity is reduced shortly after viral infection via poly-ADP-ribosylation of the RNA-induced silencing complex (RISC), a core component of RNAi.

View Article and Find Full Text PDF

Argonaute proteins and small RNAs together form the RNA-induced silencing complex (RISC), the central effector of RNA interference (RNAi). The molecular chaperone Hsp90 is required for the critical step of loading small RNAs onto Argonaute proteins. Here we show that the Hsp90 cochaperones Cdc37, Aha1, FKBP4, and p23 are required for efficient RNAi.

View Article and Find Full Text PDF

Argonaute proteins are the core components of the RNA-induced silencing complex, the central effector of the mammalian RNA interference pathway. In the cytoplasm, they associate with at least two types of cytoplasmic RNA granules; processing bodies and stress granules, which function in mRNA degradation and translational repression, respectively. The significance of Argonaute association with these RNA granules is not entirely clear but it is likely related to their activities within the RNAi pathway.

View Article and Find Full Text PDF

The central effector of mammalian RNA interference (RNAi) is the RNA-induced silencing complex (RISC). Proteins of the Argonaute family are the core components of RISC. Recent work from multiple laboratories has shown that Argonaute family members are associated with at least two types of cytoplasmic RNA granules: GW/Processing bodies and stress granules.

View Article and Find Full Text PDF

Argonaute proteins are the effectors of small RNA-dependent gene-silencing pathways. In the cytoplasm, they are incorporated into large mobile ribonucleoprotein (RNP) complexes that travel along microtubules. We used a genetic screen to identify the microtubule-associated motor that interacts with Ago1-containing RNPs.

View Article and Find Full Text PDF

Argonaute proteins are effectors of RNA interference that function in the context of cytoplasmic ribonucleoprotein complexes to regulate gene expression. Processing bodies (PBs) and stress granules (SGs) are the two main types of ribonucleoprotein complexes with which Argonautes are associated. Targeting of Argonautes to these structures seems to be regulated by different factors.

View Article and Find Full Text PDF

Mitochondria have crucial roles in the life and death of mammalian cells, and help to orchestrate host antiviral defences. Here, we show that the ubiquitous human pathogen herpes simplex virus (HSV) induces rapid and complete degradation of host mitochondrial DNA during productive infection of cultured mammalian cells. The depletion of mitochondrial DNA requires the viral UL12 gene, which encodes a conserved nuclease with orthologues in all herpesviruses.

View Article and Find Full Text PDF

In mammalian cells, the GW182 protein localizes to cytoplasmic bodies implicated in the regulation of messenger RNA (mRNA) stability, translation, and the RNA interference pathway. Many of these functions have also been assigned to analogous yeast cytoplasmic mRNA processing bodies. We have characterized the single Drosophila melanogaster homologue of the human GW182 protein family, which we have named Gawky (GW).

View Article and Find Full Text PDF