Background: Immune cell expression profiling from patient samples is critical for the successful development of immuno-oncology agents and is useful to understand mechanism-of-action, to identify exploratory biomarkers predictive of response, and to guide treatment selection and combination therapy strategies. LAG-3 is an inhibitory immune checkpoint that can suppress antitumor T-cell responses and targeting LAG-3, in combination with PD-1, is a rational approach to enhance antitumor immunity that has recently demonstrated clinical success. Here, we sought to identify human immune cell subsets that express LAG-3 and its ligands, to characterize the marker expression profile of these subsets, and to investigate the potential relationship between LAG-3 expressing subsets and clinical outcomes to immuno-oncology therapies.
View Article and Find Full Text PDFDespite high initial response rates with cytoreductive surgery, conventional chemotherapy and the incorporation of biologic agents, ovarian cancer patients often relapse and die from their disease. New approaches are needed to improve patient outcomes. This study was designed to evaluate the antitumor activity of NEO-201 monoclonal antibody (mAb) in preclinical models of ovarian cancer where the NEO-201 target is highly expressed.
View Article and Find Full Text PDFNatural killer (NK) cells are essential to innate immunity and participate in cancer immune surveillance. Heterophilic interactions between carcinoembryonic antigen (CEA) on tumor cells and carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) on NK cells inhibit NK cell cytotoxicity against tumor cells. NEO-201 is a humanized IgG1 monoclonal antibody that recognizes members of CEACAM family, expressed specifically on a variety of human carcinoma cell lines and tumor tissues.
View Article and Find Full Text PDFBackground: A major mechanism of action for therapeutic antibodies is antibody-dependent cell-mediated cytotoxicity (ADCC). ALT-803 is an interleukin-15 superagonist complex that enhances ADCC against human carcinoma cells in vitro and exerts an antitumor activity in murine, rat, and human carcinomas in vivo. The authors investigated the ability of ALT-803 to modulate ADCC mediated by the humanized IgG1 monoclonal antibody (mAb) NEO-201 against human carcinoma cells.
View Article and Find Full Text PDFNEO-201 is a novel humanized IgG1 monoclonal antibody that was derived from an immunogenic preparation of tumor-associated antigens from pooled allogeneic colon tumor tissue extracts. It was found to react against a variety of cultured human carcinoma cell lines and was highly reactive against the majority of tumor tissues from many different carcinomas, including colon, pancreatic, stomach, lung, and breast cancers. NEO-201 also exhibited tumor specificity, as the majority of normal tissues were not recognized by this antibody.
View Article and Find Full Text PDFMesenchymalization is a cellular and molecular program in which epithelial cells progressively lose their well-differentiated phenotype and adopt mesenchymal characteristics. Tumor mesenchymalization occurs during the progression of cancer to metastatic disease, and is also associated with resistance to multiple therapeutics, including killing by cytotoxic immune cells. Furthermore, tumor cells can evade immune destruction by upregulating the checkpoint molecule PD-L1, and emerging research has found higher PD-L1 expression in mesenchymalized tumors.
View Article and Find Full Text PDFThe complex signaling networks of the tumor microenvironment that facilitate tumor growth and progression toward metastatic disease are becoming a focus of potential therapeutic options. The chemokine IL-8 is overexpressed in multiple cancer types, including triple-negative breast cancer (TNBC), where it promotes the acquisition of mesenchymal features, stemness, resistance to therapies, and the recruitment of immune-suppressive cells to the tumor site. The present study explores the utility of a clinical-stage monoclonal antibody that neutralizes IL-8 (HuMax-IL8) as a potential therapeutic option for TNBC.
View Article and Find Full Text PDFSemin Cancer Biol
December 2017
Tumor growth and progression are the products of complex signaling networks between different cell types within the tumor and its surrounding stroma. In particular, established tumors are known to stimulate an inflammatory reaction via the secretion of cytokines, chemokines, and growth factors that favor the recruitment of a range of infiltrating immune cell populations into the tumor microenvironment. While potentially able to exert tumor control, this inflammatory reaction is typically seized upon by the tumor to promote its own growth and progression towards metastasis.
View Article and Find Full Text PDFHuman papillomavirus (HPV) is associated with the etiology of cervical carcinoma, head and neck squamous cell carcinoma, and several other cancer types. Vaccines directed against HPV virus-like particles and coat proteins have been extremely successful in the prevention of cervical cancer through the activation of host HPV-specific antibody responses; however, HPV-associated cancers remain a major public health problem. The development of a therapeutic vaccine will require the generation of T-cell responses directed against early HPV proteins (E6/E7) expressed in HPV-infected tumor cells.
View Article and Find Full Text PDFEpithelial-mesenchymal transition (EMT) is recognized as a relevant process during the progression of carcinomas towards metastatic disease. Epithelial cancer cells undergoing an EMT program may acquire mesenchymal features, motility, invasiveness, and resistance to a variety of anticancer therapeutics. Preventing or reverting the EMT process in carcinomas has the potential to minimize tumor dissemination and the emergence of therapeutic resistance.
View Article and Find Full Text PDFPharmacol Ther
February 2017
Controlling the spread of carcinoma cells to distant organs is the foremost challenge in cancer treatment, as metastatic disease is generally resistant to therapy and is ultimately incurable for the majority of patients. The plasticity of tumor cell phenotype, in which the behaviors and functions of individual tumor cells differ markedly depending upon intrinsic and extrinsic factors, is now known to be a central mechanism in cancer progression. Our expanding knowledge of epithelial and mesenchymal phenotypic states in tumor cells, and the dynamic nature of the transitions between these phenotypes has created new opportunities to intervene to better control the behavior of tumor cells.
View Article and Find Full Text PDFInterleukin-8 (IL-8, CXCL8) is a pro-inflammatory chemokine produced by various cell types to recruit leukocytes to sites of infection or tissue injury. Acquisition of IL-8 and/or its receptors CXCR1 and CXCR2 are known to be a relatively common occurrence during tumor progression. Emerging research now indicates that paracrine signaling by tumor-derived IL-8 promotes the trafficking of neutrophils and myeloid-derived suppressor cells (MDSCs) into the tumor microenvironment, which have the ability to dampen anti-tumor immune responses.
View Article and Find Full Text PDFPurpose: The conversion of tumor cells from an epithelial to a mesenchymal-like phenotype, via a process designated as the epithelial-mesenchymal transition (EMT), is known to mediate tumor resistance to a variety of cell death inducers, including cytotoxic effector immune cells. The goal of this study was to identify and potentially repurpose FDA-approved compounds capable of reducing mesenchymal features of human lung carcinoma cells, which could be used in combination with immunotherapies or chemotherapeutic strategies to improve clinical responses.
Experimental Design: In the current report, we have utilized a quantitative high-throughput screening (qHTS) of a pharmaceutical collection of more than 2,000 compounds to identify clinically approved drugs capable of augmenting the sensitivity of mesenchymal-like, lung cancer cells to immune- and chemotherapy-mediated lysis, both in vitro and in vivo RESULTS: The estrogen receptor antagonist fulvestrant was shown to reduce mesenchymal features of lung carcinoma cells, resulting in tumor sensitization to the cytotoxic effect of antigen-specific T cells, natural killer (NK) effector cells, and chemotherapy both in vivo and in vitro CONCLUSIONS: To our knowledge, this is the first report defining a potential role for estrogenic signaling in promoting tumor resistance to immune-mediated cytotoxicity and chemotherapy in lung cancer.
A signaling pathway that is frequently deregulated in human carcinomas and has been explored as a therapeutic target involves the activation of the epidermal growth factor receptor (EGFR). Inhibition of EGFR via the small molecule inhibitors erlotinib and gefitinib commonly results in tumor resistance, even in patients with EGFR-mutant tumors that initially show substantial clinical responses. This study was designed to broaden our understanding of the molecular mechanisms of acquired resistance to erlotinib in lung cancer cells bearing wild type or mutated EGFR.
View Article and Find Full Text PDFEpithelial-mesenchymal transition (EMT) is a molecular and cellular program in which epithelial cells lose their well-differentiated phenotype and adopt mesenchymal characteristics. This process, which occurs naturally during embryogenesis, has also been shown to be associated with cancer progression and with tumor recurrence following conventional therapies. Brachyury is a transcription factor that mediates EMT during development, and is aberrantly expressed in various human cancers where it promotes tumor cell EMT, metastatic dissemination, and resistance to conventional therapies.
View Article and Find Full Text PDFPhenotypic heterogeneity of human carcinoma lesions, including heterogeneity in expression of tumor-associated antigens (TAAs), is a well-established phenomenon. Carcinoembryonic antigen (CEA), MUC1, and brachyury are diverse TAAs, each of which is expressed on a wide range of human tumors. We have previously reported on a novel adenovirus serotype 5 (Ad5) vector gene delivery platform (Ad5 [E1-, E2b-]) in which regions of the early 1 (E1), early 2 (E2b), and early 3 (E3) genes have been deleted.
View Article and Find Full Text PDFGramicidin A (GA) is a channel-forming ionophore that renders biological membranes permeable to specific cations which disrupts cellular ionic homeostasis. It is a well-known antibiotic, however it's potential as a therapeutic agent for cancer has not been widely evaluated. In two recently published studies, we showed that GA treatment is toxic to cell lines and tumor xenografts derived from renal cell carcinoma (RCC), a devastating disease that is highly resistant to conventional therapy.
View Article and Find Full Text PDFThe Wilms' tumor transcription factor (WT1) was originally classified as a tumor suppressor, but it is now known to also be associated with cancer progression and poor prognosis in several malignancies. WT1 plays an essential role in orchestrating a developmental process known as mesenchymal-to-epithelial transition (MET) during kidney development, but also induces the reverse process, epithelial-to-mesenchymal transition (EMT) during heart development. WT1 is not expressed in the adult kidney, but shows elevated expression in clear cell renal cell carcinoma (ccRCC).
View Article and Find Full Text PDFIonophores are hydrophobic organic molecules that disrupt cellular transmembrane potential by permeabilizing membranes to specific ions. Gramicidin A is a channel-forming ionophore that forms a hydrophilic membrane pore that permits the rapid passage of monovalent cations. Previously, we found that gramicidin A induces cellular energy stress and cell death in renal cell carcinoma (RCC) cell lines.
View Article and Find Full Text PDFThe Na,K-ATPase or sodium pump carries out the coupled extrusion of Na(+) and uptake of K(+) across the plasma membranes of cells of most higher eukaryotes. We have shown earlier that Na,K-ATPase-β 1 (NaK-β) protein levels are highly reduced in poorly differentiated kidney carcinoma cells in culture and in patients' tumor samples. The mechanism(s) regulating the expression of NaK-β in tumor tissues has yet to be explored.
View Article and Find Full Text PDFIonophores are lipid-soluble organic molecules that disrupt cellular transmembrane potential by rendering biologic membranes permeable to specific ions. They include mobile-carriers that complex with metal cations and channel-formers that insert into the membrane to form hydrophilic pores. Although mobile-carriers possess anticancer properties, investigations on channel-formers are limited.
View Article and Find Full Text PDFStrong cell-cell interactions represent a major barrier against cancer cell mobility, and loss of intercellular adhesion by E-cadherin is a fundamental change that occurs during the progression of cancer to invasive disease. However, some aggressive carcinomas retain characteristics of differentiated epithelial cells, including E-cadherin expression. Emerging evidence indicates that proteolysis of E-cadherin generates fragments that promote tumor growth, survival, and motility, suggesting that E-cadherin cleavage converts this tumor suppressor into an oncogenic factor.
View Article and Find Full Text PDF