KLEPTOSE CRYSMEB methylated cyclodextrin derivative displays less methylated group substitution than randomly methylated cyclodextrin. It has demonstrated an impact on atherosclerosis and neurological diseases, linked in part to cholesterol complexation and immune response, however, its impact on inflammatory cascade pathways is not clear. Thus, the impact of KLEPTOSE CRYSMEB on various pharmacological targets was assessed using human umbilical vein endothelial cells under physiological and inflammatory conditions, followed by screening against twelve human primary cell-based systems designed to model complex human tissue and disease biology of the vasculature, skin, lung, and inflammatory tissues using the BioMAP Diversity PLUS panel.
View Article and Find Full Text PDFUnlabelled: Partially mineralized fibrous tissue situated between tendon and bone is believed to be tougher than either tendon or bone, possibly serving as a compliant, energy absorptive, protective barrier between the two. This tissue does not reform following surgical repair (e.g.
View Article and Find Full Text PDFRotator cuff tears are common and cause a great deal of lost productivity, pain, and disability. Tears are typically repaired by suturing the tendon back to its bony attachment. Unfortunately, the structural (e.
View Article and Find Full Text PDFElectrospun nanofibers with controllable degrees of crimping are fabricated by simply exposing the samples to a plasticizer at preset shrinkage ratios. Compared with their straight counterparts, the crimped nanofibers are able to mechanically mimic native tendon tissue and better protect tendon fibroblasts under uniaxial strains.
View Article and Find Full Text PDFMuscle forces are necessary for the development and maintenance of a mineralized skeleton. Removal of loads leads to malformed bones and impaired musculoskeletal function due to changes in bone (re)modeling. In the current study, the development of a mineralized junction at the interface between muscle and bone was examined under normal and impaired loading conditions.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2014
Reattachment of tendon to bone has been a challenge in orthopedic surgery. The disparate mechanical properties of the two tissues make it difficult to achieve direct surgical repair of the tendon-to-bone insertion. Healing after surgical repair typically does not regenerate the natural attachment, a complex tissue that connects tendon and bone across a gradient in both mineral content and cell phenotypes.
View Article and Find Full Text PDFEngineering complex tissues such as the tendon-to-bone insertion sites require a strong and tough biomimetic material system that incorporates both mineralized and unmineralized tissues with different strengths and stiffnesses. However, increasing strength without degrading toughness is a fundamental challenge in materials science. Here, we demonstrate a promising nanofibrous polymer-hydroxyapatite system, in which, a continuous fibrous network must function as a scaffold for both mineralized and unmineralized tissues.
View Article and Find Full Text PDFThe nanometre-scale structure of collagen and bioapatite within bone establishes bone's physical properties, including strength and toughness. However, the nanostructural organization within bone is not well known and is debated. Widely accepted models hypothesize that apatite mineral ('bioapatite') is present predominantly inside collagen fibrils: in 'gap channels' between abutting collagen molecules, and in 'intermolecular spaces' between adjacent collagen molecules.
View Article and Find Full Text PDFA new method was developed to coat hydroxyapatite (HAp) onto electrospun poly(lactic-co-glycolic acid) (PLGA) nanofibers for tendon-to-bone insertion site repair applications. Prior to mineralization, chitosan and heparin were covalently immobilized onto the surface of the fibers to accelerate the nucleation of bone-like HAp crystals. Uniform coatings of HAp were obtained by immersing the nanofiber scaffolds into a modified, 10-fold-concentrated simulated body fluid (m10SBF) for different periods of time.
View Article and Find Full Text PDFWe have demonstrated the fabrication of "aligned-to-random" electrospun nanofiber scaffolds that mimic the structural organization of collagen fibers at the tendon-to-bone insertion site. Tendon fibroblasts cultured on such a scaffold exhibited highly organized and haphazardly oriented morphologies, respectively, on the aligned and random portions.
View Article and Find Full Text PDFWe have demonstrated a simple and versatile method for generating a continuously graded, bonelike calcium phosphate coating on a nonwoven mat of electrospun nanofibers. A linear gradient in calcium phosphate content could be achieved across the surface of the nanofiber mat. The gradient had functional consequences with regard to stiffness and biological activity.
View Article and Find Full Text PDF