Publications by authors named "Justin Link"

Cryptochromes are widely dispersed flavoprotein photoreceptors that regulate numerous developmental responses to light in plants, as well as to stress and entrainment of the circadian clock in animals and humans. All cryptochromes are closely related to an ancient family of light-absorbing flavoenzymes known as photolyases, which use light as an energy source for DNA repair but themselves have no light sensing role. Here we review the means by which plant cryptochromes acquired a light sensing function.

View Article and Find Full Text PDF

Cryptochromes are blue light-absorbing photoreceptors found in plants and animals with many important signalling functions. These include control of plant growth, development, and the entrainment of the circadian clock. Plant cryptochromes have recently been implicated in adaptations to temperature variation, including temperature compensation of the circadian clock.

View Article and Find Full Text PDF

Arabidopsis cryptochrome mediates responses to magnetic fields that have been applied in the absence of light, consistent with flavin reoxidation as the primary detection mechanism. Cryptochromes are highly conserved blue-light-absorbing flavoproteins which have been linked to the perception of electromagnetic stimuli in numerous organisms. These include sensing the direction of the earth's magnetic field in migratory birds and the intensity of magnetic fields in insects and plants.

View Article and Find Full Text PDF

Cryptochromes are evolutionarily conserved blue light receptors with many roles throughout plant growth and development. They undergo conformational changes in response to light enabling interaction with multiple downstream signaling partners. Recently, it has been shown that cryptochromes also synthesize reactive oxygen species (ROS) in response to light, suggesting the possibility of an alternate signaling mechanism.

View Article and Find Full Text PDF

Cryptochromes are flavoprotein photoreceptors with multiple signaling roles during plant de-etiolation and development. Arabidopsis cryptochromes (cry1 and cry2) absorb light through an oxidized flavin (FADox) cofactor which undergoes reduction to both FADH° and FADH(-) redox states. Since the FADH° redox state has been linked to biological activity, it is important to estimate its concentration formed upon illumination in vivo.

View Article and Find Full Text PDF

Cryptochromes are blue-light absorbing flavoproteins with multiple signaling roles. In plants, cryptochrome (cry1, cry2) biological activity has been linked to flavin photoreduction via an electron transport chain to the protein surface comprising 3 evolutionarily conserved tryptophan residues known as the 'Trp triad.' Mutation of any of the Trp triad residues abolishes photoreduction in isolated cryptochrome protein in vitro and therefore had been suggested as essential for electron transfer to the flavin.

View Article and Find Full Text PDF

Protein structural plasticity is critical to many biological activities and accurate determination of its temporal and spatial fluctuations is challenging and difficult. Here, we report our extensive characterization of global flexibility of a globular heme protein of myoglobin using resonance energy transfer as a molecular ruler. With site-directed mutagenesis, we use a tryptophan scan to examine local structural fluctuations from B to H helices utilizing 10 tryptophan-heme energy transfer pairs with femtosecond resolution.

View Article and Find Full Text PDF

We report here our systematic characterization of resonance energy transfer between intrinsic tryptophan and the prosthetic heme group in myoglobin in order to develop a novel energy-transfer pair as a molecular ruler in heme proteins to study local conformation fluctuations. With site-directed mutagenesis, we designed four tryptophan mutants along the A-helix of myoglobin and each mutant contains only a single tryptophan-heme energy-transfer pair. With femtosecond resolution, we observed, even at separation distances of 15-25 A, ultrafast energy transfer in tens to hundreds of picoseconds.

View Article and Find Full Text PDF

We report here our systematic studies of the heme dynamics and induced protein conformational relaxations in two redox states of ferric and ferrous cytochrome c upon femtosecond excitation. With a wide range of probing wavelengths from the visible to the UV and a site-directed mutation we unambiguously determined that the protein dynamics in the two states are drastically different. For the ferrous state the heme transforms from 6-fold to 5-fold coordination with ultrafast ligand dissociation in less than 100 fs, followed by vibrational cooling within several picoseconds, but then recombining back to its original 6-fold coordination in 7 ps.

View Article and Find Full Text PDF