Publications by authors named "Justin Lawrie"

Protein tyrosine -sulfation is an essential post-translational modification required for effective biological processes such as hemostasis, inflammatory response, and visual phototransduction. Because of its unstable nature under mass spectrometry conditions and residing on low-abundance cell surface proteins, sulfated tyrosine (sulfotyrosine) residues are difficult to detect or analyze. Enrichment of sulfotyrosine-containing proteins (sulfoproteins) from complex biological samples are typically required before analysis.

View Article and Find Full Text PDF

Protein tyrosine O-sulfation (PTS) plays a crucial role in extracellular biomolecular interactions that dictate various cellular processes. It also involves in the development of many human diseases. Regardless of recent progress, our current understanding of PTS is still in its infancy.

View Article and Find Full Text PDF

Protein tyrosine O-sulfation is considered as one of the most common types of posttranslational modification of tyrosine in nature. The introduction of a negatively charged sulfate group plays crucial roles in extracellular biomolecular interactions that dictate various cellular processes, including cell adhesion, leukocyte trafficking, hormone activities, and immune responses. Despite substantial advances in our knowledge about protein tyrosine O-sulfation in recent years, our understanding of its biological significance is still in its infancy.

View Article and Find Full Text PDF

Bacterial microcompartments (BMCs) are promising natural protein structures for applications that require the segregation of certain metabolic functions or molecular species in a defined microenvironment. To understand how endogenous cargos are packaged inside the protein shell is key for using BMCs as nano-scale reactors or delivery vesicles. In this report, we studied the encapsulation of RuBisCO into the α-type carboxysome from Halothiobacillus neapolitan.

View Article and Find Full Text PDF

In contrast to the nearly error-free self-assembly of protein architectures in nature, artificial assembly of protein complexes with pre-defined structure and function in vitro is still challenging. To mimic nature's strategy to construct pre-defined three-dimensional protein architectures, highly specific protein-protein interacting pairs are needed. Here we report an effort to create an orthogonally interacting protein pair from its parental pair using a bacteria-based in vivo directed evolution strategy.

View Article and Find Full Text PDF