Publications by authors named "Justin Law"

N-Methyladenosine (mA), one of the most abundant chemical modifications in mRNA (epitranscriptome), contributes to the regulation of biological processes by iterating gene expression post-transcriptionally. A number of publications on mA modification have escalated in the recent past, due to the advancements in profiling mA along the transcriptome using different approaches. The vast majority of studies primarily focused on mA modification on cell lines but not primary cells.

View Article and Find Full Text PDF

Detecting various types of cells in and around the tumor matrix holds a special significance in characterizing the tumor micro-environment for cancer prognostication and research. Automating the tasks of detecting, segmenting, and classifying nuclei can free up the pathologists' time for higher value tasks and reduce errors due to fatigue and subjectivity. To encourage the computer vision research community to develop and test algorithms for these tasks, we prepared a large and diverse dataset of nucleus boundary annotations and class labels.

View Article and Find Full Text PDF

Plants have evolved genome complexity through iterative rounds of single gene and whole genome duplication. This has led to substantial expansion in transcription factor numbers following preferential retention and subsequent functional divergence of these regulatory genes. Here we review how this simple evolutionary network rewiring process, regulatory gene duplication followed by functional divergence, can be used to inspire synthetic biology approaches that seek to develop novel phenotypic variation for future trait based breeding programs in plants.

View Article and Find Full Text PDF

Adult tissue repair and regeneration require stem-progenitor cells that can self-renew and generate differentiated progeny. Skeletal muscle regenerative capacity relies on muscle satellite cells (MuSCs) and their interplay with different cell types within the niche. However, our understanding of skeletal muscle tissue cellular composition is limited.

View Article and Find Full Text PDF

Aim: Glycoconjugated C derivatives are of particular interest as potential cancer targeting agents due to an upregulated metabolic glucose demand, especially in the case of pancreatic adenocarcinoma and its dense stroma, which is known to be driven by a subset of pancreatic stellate cells.

Materials & Methods: Herein, we describe the synthesis and biological characterization of a hexakis-glucosamine C derivative (termed 'Sweet-C').

Results: Synthesized fullerene derivative predominantly accumulates in the nucleus of pancreatic stellate cells; is inherently nontoxic up to concentrations of 1 mg/ml; and is photoactive when illuminated with blue and green light, allowing its use as a photodynamic therapy agent.

View Article and Find Full Text PDF

Large animal models are important tools for hepatocellular carcinoma (HCC) research, especially in studies of hepatic vasculature, interventional techniques, and radiofrequency or microwave hyperthermia. Currently, diethylnitrosamine (DENA)-induced HCC in pigs is the only large animal model for in situ HCC with a tumor latency of 10-26 months. While phenobarbital (PB) is often used to accelerate DENA-induced HCC in rodents, it has not been previously studied in the porcine model.

View Article and Find Full Text PDF

Noninvasive radiofrequency-induced (RF) hyperthermia has been shown to increase the perfusion of chemotherapeutics and nanomaterials through cancer tissue in ectopic and orthotopic murine tumor models. Additionally, mild hyperthermia (37°C-45°C) has previously shown a synergistic anticancer effect when used with standard-of-care chemotherapeutics such as gemcitabine and Abraxane. However, RF hyperthermia treatment schedules remain unoptimized, and the mechanisms of action of hyperthermia and how they change when treating various tumor phenotypes are poorly understood.

View Article and Find Full Text PDF

Patients with pancreatic ductal adenocarcinomas (PDAC) have one of the poorest survival rates of all cancers. The main reason for this is related to the unique tumor stroma and poor vascularization of PDAC. As a consequence, chemotherapeutic drugs, such as nab-paclitaxel and gemcitabine, cannot efficiently penetrate into the tumor tissue.

View Article and Find Full Text PDF

Previous work using non-invasive radiofrequency field treatment (RFT) in cancer has demonstrated its therapeutic potential as it can increase intratumoral blood perfusion, localization of intravenously delivered drugs, and promote a hyperthermic intratumoral state. Despite the well-known immunologic benefits that febrile hyperthermia can induce, an investigation of how RFT could modulate the intra-tumoral immune microenvironment had not been studied. Thus, using an established 4T1 breast cancer model in immune competent mice, we demonstrate that RFT induces a transient, localized, and T-cell dependent intratumoral inflammatory response.

View Article and Find Full Text PDF

Surgical margin status in cancer surgery represents an important oncologic parameter affecting overall prognosis. The risk of disease recurrence is minimized and survival often prolonged if margin-negative resection can be accomplished during cancer surgery. Unfortunately, negative margins are not always surgically achievable due to tumor invasion into adjacent tissues or involvement of critical vasculature.

View Article and Find Full Text PDF

The Kanzius non-invasive radio-frequency hyperthermia system (KNiRFH) has been investigated as a treatment option for hepatic hyperthermia cancer therapy. The treatment involves exposing the patient to an external high-power RF (13.56 MHz) electric field, whereby the propagating waves penetrate deep into the tumor causing targeted heating based on differential tissue dielectric properties.

View Article and Find Full Text PDF

Interactions of high-frequency radio waves (RF) with biological tissues are currently being investigated as a therapeutic platform for non-invasive cancer hyperthermia therapy. RF delivers thermal energy into tissues, which increases intra-tumoral drug perfusion and blood-flow. Herein, we describe an optical-based method to optimize the short-term treatment schedules of drug and hyperthermia administration in a 4T1 breast cancer model via RF, with the aim of maximizing drug localization and homogenous distribution within the tumor microenvironment.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a prominent desmoplastic/stromal reaction, which contributes to the poor clinical outcome of this disease. Therefore, greater understanding of the stroma development and tumor-stroma interactions is highly required. Pancreatic stellate cells (PSC) are myofibroblast-like cells located in exocrine areas of the pancreas, which as a result of inflammation produced by PDAC migrate and accumulate in the tumor mass, secreting extracellular matrix components and producing the dense PDAC stroma.

View Article and Find Full Text PDF

There is an ever increasing interest in developing new stem cell therapies. However, imaging and tracking stem cells in vivo after transplantation remains a serious challenge. In this work, we report new, functionalized and high-performance Gd(3+)-ion-containing ultra-short carbon nanotube (US-tube) MRI contrast agent (CA) materials which are highly-water-dispersible (ca.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) is of vast clinical utility, with tens of millions of scans performed annually. Chemical contrast agents (CAs) can greatly enhance the diagnostic potential of MRI, and ∼50% of MRI scans use CAs. However, CAs have significant limitations such as low contrast enhancement, lack of specificity, and potential toxicity.

View Article and Find Full Text PDF

Unlabelled: (225)Ac(3+) is a generator of α-particle-emitting radionuclides with 4 net α-particle decays that can be used therapeutically. Targeting (225)Ac(3+) by use of ligands conjugated to traditional bifunctional chelates limits the amount of (225)Ac(3+) that can be delivered. Ultrashort, single-walled carbon nanotubes (US-tubes), previously demonstrated as sequestering agents of trivalent lanthanide ions and small molecules, also successfully incorporate (225)Ac(3+).

View Article and Find Full Text PDF

Ultrashort single-walled carbon nanotubes loaded with gadolinium ions (gadonanotubes) have been previously shown to exhibit extremely high T1 -weighted relaxivities (>100 mm(-1) s(-1) ). To further examine the effect of nanoconfinement on the relaxivity of gadolinium-based contrast agents for magnetic resonance imaging, a series of ultrashort single-walled carbon nanotube (US-tube) materials internally loaded with gadolinium chelates have been prepared and studied. US-tubes were loaded with Gd(acac)3  · 2H2 O, Gd(hfac)3  · 2H2 O, and Gd(thd)3 (acac = acetylacetone, hfac = hexafluoroacetylacetone, thd = tetramethylheptanedione).

View Article and Find Full Text PDF

Aims: Simultaneous positron emission tomography/MRI has recently been introduced to the clinic and dual positron emission tomography/MRI probes are rare and of growing interest. We have developed a strategy for producing multimodal probes based on a carbon nanotube platform without the use of chelating ligands.

Materials & Methods: Gd(3+) and (64)Cu(2+) ions were loaded into ultra-short single-walled carbon nanotubes by sonication.

View Article and Find Full Text PDF

The ligand 4,4'-dipiperidine-N,N'-bis(methylenephosphonic acid), H(4)L, has been reacted with divalent metal salts under solvothermal conditions to yield seven new metal phosphonate coordination polymers. The compounds have been characterized by elemental analyses and their structures determined by single-crystal X-ray diffraction. Zn(2)(L)(H(2)O)(2) and Co(2)(L)(H(2)O)(2) have (different) layered structures, while Mn(2)(L)(H(2)O)(3) has a chain motif.

View Article and Find Full Text PDF