Publications by authors named "Justin L Rains"

Background: Hyperketonemia is a pathological condition observed in patients with type 1 diabetes and ketosis-prone diabetes (KPD), which results in increased blood levels of acetoacetate (AA) and β-hydroxybutyrate (BHB). Frequent episodes of hyperketonemia are associated with a higher incidence of vascular disease. We examined the hypothesis that hyperketonemia activates the nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways that regulate intercellular adhesion molecule 1 (ICAM-1) expression in endothelial cells.

View Article and Find Full Text PDF

Type 1 diabetic patients have hyperketonemia, elevated levels of pro-inflammatory and oxidative stress markers, and a higher incidence of vascular disease. This study examines the hypothesis that hyperketonemia increases reactive oxygen species (ROS) and is in part responsible for increased expression of adhesion molecules in monocytes. THP-1 monocytes were treated with acetoacetate (AA) or β-hydroxybutyrate (BHB) (0-10 mmol/L) for 24 h.

View Article and Find Full Text PDF

Frequent episodes of hyperketonemia are associated with a higher incidence of vascular disease. The objective of this study was to examine the hypothesis that hyperketonemia increases monocyte-endothelial cell (EC) adhesion and the development of vascular disease in diabetes. Human U937 and THP-1 monocyte cell lines and human umbilical vein endothelial cells (HUVECs) were cultured with acetoacetate (AA) (0-10 mM) or β-hydroxybutyrate (BHB) (0-10 mM) for 24 h prior to evaluating adhesion and adhesion molecule expression.

View Article and Find Full Text PDF

Oxidative stress has been implicated as a contributor to both the onset and the progression of diabetes and its associated complications. Some of the consequences of an oxidative environment are the development of insulin resistance, β-cell dysfunction, impaired glucose tolerance, and mitochondrial dysfunction, which can lead ultimately to the diabetic disease state. Experimental and clinical data suggest an inverse association between insulin sensitivity and ROS levels.

View Article and Find Full Text PDF

Altered cellular mitochondrial membrane potential (MMP) has been implicated in the increased insulin resistance and the risk for diabetes. Hyperketonemia is increasingly being identified in type 2 diabetic patients in addition to those with type 1 diabetes. No previous study has examined the effect of hyperketonemia and trivalent chromium on cellular mitochondrial membrane potential (MMP) in any cell type.

View Article and Find Full Text PDF

Chromium and cysteine supplementation can improve glucose metabolism in animal studies. This study examined the hypothesis that a cysteinate complex of chromium is significantly beneficial than either of them in lowering blood glucose and vascular inflammation markers in Zucker diabetic fatty (ZDF) rats. Starting at the age of 6 wk, ZDF rats were supplemented orally (daily gavages for 8 more weeks) with saline-placebo (D) or chromium (400 microg Cr/Kg body weight) as chromium dinicocysteinate (CDNC), chromium dinicotinate (CDN) or chromium picolinate (CP) or equimolar L-cysteine (LC, img/Kg body weight), and fed Purina 5008 diet for 8 wk.

View Article and Find Full Text PDF

Hydrogen sulfide (H(2)S) is emerging as a physiological neuromodulator as well as a smooth muscle relaxant. We submit the first evidence that blood H(2)S levels are significantly lower in fasting blood obtained from type 2 diabetes patients compared with age-matched healthy subjects, and in streptozotocin-treated diabetic rats compared with control Sprague-Dawley rats. We further observed that supplementation with H(2)S or an endogenous precursor of H(2)S (l-cysteine) in culture medium prevents IL-8 and MCP-1 secretion in high-glucose-treated human U937 monocytes.

View Article and Find Full Text PDF

This study examined the hypothesis that l-cysteine supplementation can lower insulin resistance, glycemia, oxidative stress, and markers of vascular inflammation in type 2 diabetes using Zucker diabetic fatty (ZDF) rats as a model. Starting at the age of 6 weeks, ZDF rats were supplemented orally (daily gavage, 8 weeks) with saline placebo (D) or l-cysteine (LC; 1 mg/kg bw) and fed a high-calorie diet. Six-week-old rats without any supplementation were considered baseline (BL) rats.

View Article and Find Full Text PDF

Chromium (Cr(3+)) supplementation facilitates normal protein, fat, and carbohydrate metabolism, and is widely used by the public in many countries. This study examined the effect of chromium niacinate (Cr-N) or chromium picolinate (Cr-P) supplementation on lipid peroxidation (LP), TNF-alpha, IL-6, C-reactive protein (CRP), glycosylated hemoglobin (HbA(1)), cholesterol, and triglycerides (TG) in diabetic rats. Diabetes (D) was induced in Sprague-Dawley rats by streptozotocin (STZ) (ip, 65 mg/kg BW).

View Article and Find Full Text PDF

Elevated blood levels of the proinflammatory cytokines interleukin-6 (IL-6), interleukin-8 (IL-8), and MCP-1 (monocyte chemoattractant protein-1) increase insulin resistance and the risk of cardiovascular disease (CVD). There is no previous study that has examined the effect of ketosis and trivalent chromium on IL-6, IL-8, or MCP-1 secretion in any cell type or in human or animal model. The authors examined the hypothesis that ketosis increases and trivalent chromium decreases the levels of cytokines and oxidative stress in diabetes using a U937 monocyte cell culture model.

View Article and Find Full Text PDF