Colorectal cancer (CRC) is driven by genomic alterations in concert with dietary influences, with the gut microbiome implicated as an effector in disease development and progression. While meta-analyses have provided mechanistic insight into patients with CRC, study heterogeneity has limited causal associations. Using multi-omics studies on genetically controlled cohorts of mice, we identify diet as the major driver of microbial and metabolomic differences, with reductions in α diversity and widespread changes in cecal metabolites seen in high-fat diet (HFD)-fed mice.
View Article and Find Full Text PDFMetabolism of tryptophan by the gut microbiota into derivatives that activate the aryl hydrocarbon receptor (AhR) contributes to intestinal homeostasis. Many chronic inflammatory conditions, including celiac disease involving a loss of tolerance to dietary gluten, are influenced by cues from the gut microbiota. We investigated whether AhR ligand production by the gut microbiota could influence gluten immunopathology in nonobese diabetic (NOD) mice expressing DQ8, a celiac disease susceptibility gene.
View Article and Find Full Text PDFMicrobe-host interactions are generally homeostatic, but when dysfunctional, they can incite food sensitivities and chronic diseases. Celiac disease (CeD) is a food sensitivity characterized by a breakdown of oral tolerance to gluten proteins in genetically predisposed individuals, although the underlying mechanisms are incompletely understood. Here we show that duodenal biopsies from patients with active CeD have increased proteolytic activity against gluten substrates that correlates with increased Proteobacteria abundance, including Pseudomonas.
View Article and Find Full Text PDFBackground & Aims: Wheat-related disorders, a spectrum of conditions induced by the ingestion of gluten-containing cereals, have been increasing in prevalence. Patients with celiac disease have gluten-specific immune responses, but the contribution of non-gluten proteins to symptoms in patients with celiac disease or other wheat-related disorders is controversial.
Methods: C57BL/6 (control), Myd88, Ticam1, and Il15 mice were placed on diets that lacked wheat or gluten, with or without wheat amylase trypsin inhibitors (ATIs), for 1 week.
Background: Changes in hygiene and dietary habits, including increased consumption of foods high in fat, simple sugars, and salt that are known to impact the composition and function of the intestinal microbiota, may explain the increase in prevalence of chronic inflammatory diseases. High salt consumption has been shown to worsen autoimmune encephalomyelitis and colitis in mouse models through p38/MAPK signaling pathway. However, the effect of high salt diet (HSD) on gut microbiota and on intestinal immune homeostasis, and their roles in determining vulnerability to intestinal inflammatory stimuli are unknown.
View Article and Find Full Text PDFCeliac disease is triggered by partially digested gluten proteins. Enzyme therapies that complete protein digestion in vivo could support a gluten-free diet, but the barrier to completeness is high. Current options require enzyme amounts on the same order as the protein meal itself.
View Article and Find Full Text PDFBackground & Aims: Partially degraded gluten peptides from cereals trigger celiac disease (CD), an autoimmune enteropathy occurring in genetically susceptible persons. Susceptibility genes are necessary but not sufficient to induce CD, and additional environmental factors related to unfavorable alterations in the microbiota have been proposed. We investigated gluten metabolism by opportunistic pathogens and commensal duodenal bacteria and characterized the capacity of the produced peptides to activate gluten-specific T-cells from CD patients.
View Article and Find Full Text PDFTherap Adv Gastroenterol
July 2016
The gut microbiota contributes to the maintenance of health and, when disrupted, may drive gastrointestinal and extragastrointestinal disease. This can occur through direct pathways such as interaction with the epithelial barrier and mucosal immune system or indirectly via production of metabolites. There is no current curative therapy for chronic inflammatory conditions such as inflammatory bowel disease, which are complex multifactorial disorders involving genetic predisposition, and environmental triggers.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
July 2016
Celiac disease (CD) is an immune-mediated enteropathy triggered by gluten in genetically susceptible individuals. Innate immunity contributes to the pathogenesis of CD, but the mechanisms remain poorly understood. Although previous in vitro work suggests that gliadin peptide p31-43 acts as an innate immune trigger, the underlying pathways are unclear and have not been explored in vivo.
View Article and Find Full Text PDFPolymorphisms in the PTPN11 gene encoding for the tyrosine phosphatase SHP-2 were described in patients with ulcerative colitis. We have recently demonstrated that mice with an intestinal epithelial cell-specific deletion of SHP-2 (SHP-2(IEC-KO) ) develop severe colitis 1 month after birth. However, the mechanisms by which SHP-2 deletion induces colonic inflammation remain to be elucidated.
View Article and Find Full Text PDFCeliac disease (CD) is an immune-mediated enteropathy triggered by gluten in genetically susceptible individuals. The recent increase in CD incidence suggests that additional environmental factors, such as intestinal microbiota alterations, are involved in its pathogenesis. However, there is no direct evidence of modulation of gluten-induced immunopathology by the microbiota.
View Article and Find Full Text PDFCeliac disease (CD) is an autoimmune disorder in individuals that carry DQ2 or DQ8 MHC class II haplotypes, triggered by the ingestion of gluten. There is no current treatment other than a gluten-free diet (GFD). We have previously shown that the BL-7010 copolymer poly(hydroxyethyl methacrylate-co-styrene sulfonate) (P(HEMA-co-SS)) binds with higher efficiency to gliadin than to other proteins present in the small intestine, ameliorating gliadin-induced pathology in the HLA-HCD4/DQ8 model of gluten sensitivity.
View Article and Find Full Text PDF