Publications by authors named "Justin Kilmarx"

Visual imagery, or the mental simulation of visual information from memory, could serve as an effective control paradigm for a brain-computer interface (BCI) due to its ability to directly convey the user's intention with many natural ways of envisioning an intended action. However, multiple initial investigations into using visual imagery as a BCI control strategies have been unable to fully evaluate the capabilities of true spontaneous visual mental imagery. One major limitation in these prior works is that the target image is typically displayed immediately preceding the imagery period.

View Article and Find Full Text PDF

. Complex spatiotemporal neural activity encodes rich information related to behavior and cognition. Conventional research has focused on neural activity acquired using one of many different measurement modalities, each of which provides useful but incomplete assessment of the neural code.

View Article and Find Full Text PDF

Computer cursor control using electroencephalogram (EEG) signals is a common and well-studied brain-computer interface (BCI). The emphasis of the literature has been primarily on evaluation of the objective measures of assistive BCIs such as accuracy of the neural decoder whereas the subjective measures such as user's satisfaction play an essential role for the overall success of a BCI. As far as we know, the BCI literature lacks a comprehensive evaluation of the usability of the mind-controlled computer cursor in terms of decoder efficiency (accuracy), user experience, and relevant confounding variables concerning the platform for the public use.

View Article and Find Full Text PDF

The inability to individuate finger movements is a common impairment following stroke. Conventional physical therapy ignores underlying neural changes with recovery, leaving it unclear why sensorimotor function often remains impaired. Functional MRI neurofeedback can monitor neural activity and reinforce it towards a healthy template to restore function.

View Article and Find Full Text PDF

A brain-computer interface (BCI) platform can be utilized by a user to control an external device without making any overt movements. An EEG-based computer cursor control task is commonly used as a testbed for BCI applications. While traditional computer cursor control schemes are based on sensorimotor rhythm, a new scheme has recently been developed using imagined body kinematics (IBK) to achieve natural cursor movement in a shorter time of training.

View Article and Find Full Text PDF