An intriguing aspect of protein synthesis is how cotranslational events are managed inside the cell. In this study, we developed an bimolecular fluorescence complementation assay coupled to SecM stalling (BiFC-SecM) to study how codon usage influences the interactions of ribosome-associating factors that occur cotranslationally. We profiled ribosomal associations of a number of proteins, and observed differential association of chaperone proteins TF, DnaK, GroEL, and translocation factor Ffh as a result of introducing synonymous codon substitutions that change the affinity of the translating sequence to the ribosomal anti-Shine-Dalgarno (aSD) sequence.
View Article and Find Full Text PDFTight regulation of gene expression is important for the survival of , a model bacterium of extreme stress resistance. Few studies have examined the use of regulatory RNAs as a possible contributing mechanism to ionizing radiation (IR) resistance, despite their proffered efficient and dynamic gene expression regulation under IR stress. This work presents a transcriptome-based approach for the identification of stress-responsive regulatory 5' untranslated region (5'-UTR) elements in R1 that can be broadly applied to other bacteria.
View Article and Find Full Text PDF