The African BioGenome Project (AfricaBP) Open Institute for Genomics and Bioinformatics aims to overcome barriers to capacity building through its distributed African regional workshops and prioritizes the exchange of grassroots knowledge and innovation in biodiversity genomics and bioinformatics. In 2023, we implemented 28 workshops on biodiversity genomics and bioinformatics, covering 11 African countries across the 5 African geographical regions. These regional workshops trained 408 African scientists in hands-on molecular biology, genomics and bioinformatics techniques as well as the ethical, legal and social issues associated with acquiring genetic resources.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
August 2024
Background & Aims: Necrotizing enterocolitis (NEC) is a life-threatening disease affecting mostly the ileum of preemies. Intestinal epithelial cell (IEC) apoptosis contributes to NEC pathogenesis. However, how scattered crypt IEC apoptosis leads to NEC with excessive villus epithelial necrosis remains unclear.
View Article and Find Full Text PDFBackground: Limited understanding of the diversity of variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene across ancestries hampers efforts to advance molecular diagnosis of cystic fibrosis (CF). The consequences pose a risk of delayed diagnoses and subsequently worsened health outcomes for patients. Therefore, characterizing the spectrum of CFTR variants across ancestries is critical for revolutionizing molecular diagnoses of CF.
View Article and Find Full Text PDFA key player in mitochondrial respiration, p32, often referred to as C1QBP, is mostly found in the mitochondrial matrix. Previously, we showed that p32 interacts with DLAT in the mitochondria. Here, we found that p32 expression was reduced in ccRCC and suppressed progression and metastasis in ccRCC animal models.
View Article and Find Full Text PDFThe vision of the American Society of Human Genetics (ASHG) is that people everywhere will realize the benefits of human genetics and genomics. Implicit in that vision is the importance of ensuring that the benefits of human genetics and genomics research are realized in ways that minimize harms and maximize benefits, a goal that can only be achieved through focused efforts to address health inequities and increase the representation of underrepresented communities in genetics and genomics research. This guidance is intended to advance community engagement as an approach that can be used across the research lifecycle.
View Article and Find Full Text PDFCystic fibrosis (CF) is an inherited disorder caused by biallelic mutations of the CF transmembrane conductance regulator (CFTR) gene. Converging evidence suggests that CF carriers with only 1 defective CFTR copy are at increased risk for CF-related conditions and pulmonary infections, but the molecular mechanisms underpinning this effect remain unknown. We performed transcriptomic profiling of peripheral blood mononuclear cells (PBMCs) of CF child-parent trios (proband, father, and mother) and healthy control (HC) PBMCs or THP-1 cells incubated with the plasma of these participants.
View Article and Find Full Text PDFExtracellular circulating miRNAs (ECmiRNAs) play a crucial role in cell-to-cell communication and serve as non-invasive biomarkers in a wide range of diseases, but their abundance and functional relevance in cystic fibrosis (CF) remain poorly understood. In this study, we employed microarray technology to identify aberrantly expressed plasma ECmiRNAs in CF and elucidate the functional relevance of their targets. Overall, we captured several ECmiRNAs abundantly expressed in CF.
View Article and Find Full Text PDFBackground: Renal cell carcinoma (RCC) is a deadly urological tumor that remains largely incurable. Our limited understanding of key molecular mechanisms underlying RCC invasion and metastasis has hampered efforts to identify molecular drivers with therapeutic potential. With evidence from our previous study revealing that nuclear overexpression of YBX1 is associated with RCC T stage and metastasis, we investigated the effects of YBX1 in RCC migration, invasion, and adhesion, and then characterized its interaction with RCC-associated proteins G3BP1 and SPP1.
View Article and Find Full Text PDFBackground: In cystic fibrosis (CF), impaired immune cell responses, driven by the dysfunctional CF transmembrane conductance regulator (CFTR) gene, may determine the disease severity but clinical heterogeneity remains a major therapeutic challenge. The characterization of molecular mechanisms underlying impaired immune responses in CF may reveal novel targets with therapeutic potential. Therefore, we utilized simultaneous RNA sequencing targeted at identifying differentially expressed genes, transcripts, and miRNAs that characterize impaired immune responses triggered by CF and its phenotypes.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
September 2019
Cystic fibrosis (CF) is caused by mutations of the gene encoding the CF transmembrane conductance regulator. It remains unclear whether the abnormal immune response in CF involves extrinsic signals released from the external or internal environment. We sought to characterize the peripheral immune signatures in CF and its association with clinical phenotypes.
View Article and Find Full Text PDFIn cystic fibrosis (CF), mutations in the cystic fibrosis transmembrane conductance regulator () gene disrupt the capacity of the encoded protein to function as a channel to transport chloride ions and water across cell membranes. The consequences are deleterious, system-wide, and immensely variable, even among patients with the same genotype. This underscores the need to characterize the mechanisms contributing to CF pathophysiology.
View Article and Find Full Text PDFAlthough cystic fibrosis (CF) is attributed to dysfunction of a single gene, the relationships between the abnormal gene product and the development of inflammation and progression of lung disease are not fully understood, which limits our ability to predict an individual patient's clinical course and treatment response. To better understand CF progression, we characterized the molecular signatures of CF disease status with plasma-based functional genomics. Peripheral blood mononuclear cells (PBMCs) from healthy donors were cultured with plasma samples from CF patients ( n = 103) and unrelated, healthy controls ( n = 31).
View Article and Find Full Text PDFThe Toll-like receptor (TLR) genes are a conserved family of genes central to the innate immune response to pathogen infection. They encode receptor proteins, recognise pathogen associated molecular patterns (PAMPs) and trigger initial immune responses. In some host-pathogen systems, it is reported that genetic differences, such as single nucleotide polymorphisms (SNPs), associate with disease resistance or susceptibility.
View Article and Find Full Text PDFThe gene is structurally and functionally related to the cystic fibrosis transmembrane conductance regulator gene (). Upregulation of is thought to improve lung function in patients with cystic fibrosis (CF); the mechanism underlying this effect is unknown. We analyzed the promoter single nucleotide polymorphism (SNP rs504348), plasma-induced mRNA expression levels, and methylation status and their correlation with clinical variables among CF subjects with differing mutations.
View Article and Find Full Text PDF