Publications by authors named "Justin Hui"

Cells have robust wound repair systems to prevent further damage or infection and to quickly restore cell cortex integrity when exposed to mechanical and chemical stress. Actomyosin ring formation and contraction at the wound edge are major events during closure of the plasma membrane and underlying cytoskeleton during cell wound repair. Here, we show that all five Drosophila Septins are required for efficient cell wound repair.

View Article and Find Full Text PDF

Cells have robust wound repair systems to prevent further damage or infection and to quickly restore cell cortex integrity when exposed to mechanical and chemical stress. Actomyosin ring formation and contraction at the wound edge are major events during closure of the plasma membrane and underlying cytoskeleton during cell wound repair. Here, we show that all five Septins are required for efficient cell wound repair.

View Article and Find Full Text PDF

In many cellular contexts, intracellular actomyosin networks must generate directional forces to carry out cellular tasks such as migration and endocytosis, which play important roles during normal developmental processes. A number of different actin binding proteins have been identified that form linear or branched actin, and that regulate these filaments through activities such as bundling, crosslinking, and depolymerization to create a wide variety of functional actin assemblies. The helical nature of actin filaments allows them to better accommodate tensile stresses by untwisting, as well as to bend to great curvatures without breaking.

View Article and Find Full Text PDF

Rho family GTPases regulate both linear and branched actin dynamics by activating downstream effectors to facilitate the assembly and function of complex cellular structures such as lamellipodia and contractile actomyosin rings. Wiskott-Aldrich Syndrome (WAS) family proteins are downstream effectors of Rho family GTPases that usually function in a one-to-one correspondence to regulate branched actin nucleation. In particular, the WAS protein Scar/WAVE has been shown to exhibit one-to-one correspondence with Rac GTPase.

View Article and Find Full Text PDF

Cells are subjected to a barrage of daily insults that often lead to their cortices being ripped open and requiring immediate repair. An important component of the cell's repair response is the formation of an actomyosin ring at the wound periphery to mediate its closure. Here we show that inhibition of myosin or the linear actin nucleation factors Diaphanous and/or dishevelled associated activator of morphogenesis results in a disrupted contractile apparatus and delayed wound closure.

View Article and Find Full Text PDF

To cope with continuous physiological and environmental stresses, cells of all sizes require an effective wound repair process to seal breaches to their cortex. Once a wound is recognized, the cell must rapidly plug the injury site, reorganize the cytoskeleton and the membrane to pull the wound closed, and finally remodel the cortex to return to homeostasis. Complementary studies using various model organisms have demonstrated the importance and complexity behind the formation and translocation of an actin ring at the wound periphery during the repair process.

View Article and Find Full Text PDF

Here, we report the design and development of highly stretchable, compliant, and enzymatic-resistant transiently cross-linked decellularized extracellular matrixes (dECMs) (e.g., porcine small intestine submucosa/dSIS, urinary bladder matrix/dUBM, bovine pericardium/dBP, bovine dermis/dBD, and human dermis/dHD).

View Article and Find Full Text PDF
Article Synopsis
  • A male frog significantly expands and contracts its gular skin during mating calls, similar to how the human bladder operates, which raises questions about the mechanisms behind this unique tissue behavior.
  • Research shows that male frog gular skin can stretch up to 400% with a tensile strength of 1.7 MPa, while related species and the rat bladder have different stretching capabilities and structural compositions.
  • The study uncovers a unique layered arrangement of collagen fibers in frog gular skin, leading to its high extensibility and suggesting potential applications for creating compliant biomaterials in regenerative medicine.
View Article and Find Full Text PDF

Background & Aims: In short-bowel syndrome (SBS), inadequate intestinal adaptation is responsible for the majority of complications, including sepsis, liver failure, and death. In this study, we sought to further delineate the adaptive response to identify potential therapeutic targets.

Methods: We performed a 75% small-bowel resection (SBR) or sham operation on C57Bl/6J wild-type (WT), lipocalin-2 (LCN2), and interleukin 22 (IL22) mice.

View Article and Find Full Text PDF

This paper presents the development of a metal oxide semiconductor (MOS) sensor for the detection of volatile organic compounds (VOCs) which are of great importance in many applications involving either control of hazardous chemicals or noninvasive diagnosis. In this study, the sensor is fabricated based on tin dioxide (SnO) and poly(ethylene oxide) (PEO) using electrospinning. The sensitivity of the proposed sensor is further improved by calcination and gold doping.

View Article and Find Full Text PDF