Publications by authors named "Justin Hertzler"

Total hip arthroplasty (THA) failure and the need for revision surgery can result from fretting-corrosion damage of the head-neck modular taper junctions. Prior work has shown that implant geometry, such as microgrooves, influences damage on retrieved implants. Microgroove deformation within the modular taper junction occurs when the female head taper meets the male stem taper during THA surgical procedure.

View Article and Find Full Text PDF

Background: Highly crosslinked polyethylene (HXLPE) was developed for its superior wear properties in comparison to conventional polyethylene (CPE). Concern over fatigue resistance has prevented widespread adoption of HXLPE for use in total ankle arthroplasty (TAA). The aim of this study was to determine whether HXLPE has sufficient fatigue strength for total ankle arthroplasty under simulated physiologically relevant motion profiles and loading in the ankle.

View Article and Find Full Text PDF

Restoration of normal patella kinematics is an important clinical outcome of total knee arthroplasty. Failure of the patella within total knee systems has been documented and, upon occurrence, often necessitates revision surgery. It is thus important to understand patella mechanics following implantation, subject to load states that are typically realized during walking and other gaits.

View Article and Find Full Text PDF

The goal of this study was to determine the effect of assembly load and local assembly environmental conditions on the fretting corrosion of modular femoral stem tapers. Femoral head/taper assemblies in both similar (CoCrMo/CoCrMo) and mixed (CoCrMo/Ti-6Al-4V) alloy combinations were evaluated using an electrochemical test method. Specimens were assembled under impact loading and by hand, in both wet and dry conditions.

View Article and Find Full Text PDF

Retrieval studies indicate that cemented stem loosening in femoral components of total hip replacement can initiate at the stem-cement interface. The etiology of the crack propagation process from the stem-cement interface is not well understood, but cracks are typically associated with thin cement mantles. In this study, a combination of experimental and computational methods was used to investigate the fatigue crack propagation process from the stem-PMMA cement interface using a novel torsional loading model.

View Article and Find Full Text PDF