Publications by authors named "Justin Heavilin"

Plant soil feedbacks (PSFs) are thought to be important to plant growth and species coexistence, but most support for these hypotheses is derived from short-term greenhouse experiments. Here we use a seven-year, common garden experiment to measure PSFs for seven native and six nonnative species common to the western United States. We use these long-term, field-based estimates to test correlations between PSF and plant landscape abundance, species origin, functional type, and lifespan.

View Article and Find Full Text PDF

A mixture of combustion products (mainly hydrogen chloride, aluminum oxide, and water) and entrained soil, referred to as Test Fire Soil (TFS), can be deposited on crops during static solid rocket motor tests. The impact of a reported worst-case event was previously evaluated by exposing corn and alfalfa to 3200-gTFS/m at 54days after emergence. Exposures via soil and leaves were evaluated separately.

View Article and Find Full Text PDF

It has become clear that plants can create soils that affect subsequent plant growth. However, because plant-soil feedbacks (PSFs) are typically measured in monoculture experiments, it remains unclear to what extent PSFs affect plant growth in communities. Here we used data from a factorial PSF experiment to predict the biomass of 12 species grown in 162 plant community combinations.

View Article and Find Full Text PDF

Tests of horizontally restrained rocket motors at the ATK facility in Promontory, Utah, USA result in the deposition of an estimated 1.5million kg of entrained soil and combustion products (mainly aluminum oxide, gaseous hydrogen chloride and water) on the surrounding area. The deposition is referred to as test fire soil (TFS).

View Article and Find Full Text PDF

Plant-soil feedbacks (PSFs) have gained attention for their role in plant community dynamics, but their role in productivity has been overlooked. We developed and tested a biomass-specific, multi-species model to examine the role of PSFs in diversity-productivity relationships. The model predicts a negative relationship between PSFs and overyielding: plants with negative PSFs grow more in communities than in monoculture (i.

View Article and Find Full Text PDF