The MERS coronavirus (MERS-CoV) is a highly pathogenic, emerging virus that produces accessory proteins to antagonize the host innate immune response. The MERS-CoV ORF4b protein has been shown to bind preferentially to the nuclear import adapter IMPα3 in infected cells, thereby inhibiting NF-κB-dependent innate immune responses. Here, we report high-resolution structures of ORF4b bound to two distinct IMPα family members.
View Article and Find Full Text PDFToxic baiting of wild pigs (Sus scrofa) is a potential new tool for population control and damage reduction in the US. Field trials testing a prototype toxic bait (HOGGONE 2 containing 5% sodium nitrite [SN]), though, revealed that wild pigs spilled small particles of toxic bait outside of bait stations which subsequently created hazards for non-target species that consumed those particles, primarily passerine birds. To deter non-target birds from consuming particles of spilled bait, we tested four deterrents at mock bait sites (i.
View Article and Find Full Text PDFConsidering the widespread occurrence of oxalate in nature and its broad impact on a host of organisms, it is surprising that so little is known about the turnover of this important acid. In plants, oxalate oxidase is the most well-studied enzyme capable of degrading oxalate, but not all plants possess this activity. Recently, acyl-activating enzyme 3 (AAE3), encoding an oxalyl-CoA synthetase, was identified in Arabidopsis.
View Article and Find Full Text PDFBackground: Wild pigs (Sus scrofa) are a destructive invasive species throughout many regions of the world. In 2018, a field evaluation of an early prototype of a sodium nitrite (SN) toxic bait in the United States revealed wild pigs dropped large amounts of the toxic bait outside the pig-specific bait stations while feeding, and thus subsequent hazards for non-target animals. We modified the SN-toxic bait formulation, the design of the bait station, and the baiting strategy to reduce dropped bait.
View Article and Find Full Text PDFObjective: Opioids are high-risk medications in the inpatient setting because of their potential for significant patient harm. The primary objective was to identify risk factors that predispose inpatients to develop opioid-related adverse drug events (ORADE) requiring the use of naloxone.
Methods: In a retrospective case-control study, patients were included according to the following criteria: 18 years or older, 1 administered opioid doses or more, and admitted for 24 hours or more.
Biochem Biophys Res Commun
October 2018
The Acyl-Activating Enzyme (AAE) 3 gene encodes an oxalyl-CoA synthetase that catalyzes the conversion of oxalate to oxalyl-CoA in a CoA and ATP-dependent manner. Although the biochemical activity of AAE3 has been established, its biological role in plant growth and development remains unclear. To advance our understanding of the role of AAE3 in plant growth and development, we report here the characterization of two Medicago truncatula AAE3 (Mtaae3) mutants.
View Article and Find Full Text PDFThe completion of the zebrafish genome sequence and advances in miniaturization and multiplexing were essential to the creation of techniques such as RNA-seq, ChIP-seq, and high-throughput behavioral and chemical screens. Multiplexing was also instrumental in the recent enhancement of the classic yeast one-hybrid interaction techniques to provide unprecedented discovery capabilities for protein-DNA interactions. Unfortunately its use for zebrafish research is currently hampered by the lack of an open reading frame (ORF) clone collection.
View Article and Find Full Text PDFBackground: An acute and orally delivered toxic bait containing micro-encapsulated sodium nitrite (MESN), is under development to provide a novel and humane technology to help curtail damage caused by invasive wild pigs (Sus scrofa). We evaluated potential secondary risks for non-target species by: testing whether four different types of micro-encapsulation coatings could reduce vomiting by invasive wild pigs, testing the levels of residual sodium nitrite (SN) in tissues of invasive wild pigs, testing the environmental persistence of SN in vomitus, and conducting a risk assessment for scavengers.
Results: Micro-encapsulation coatings did not affect the frequency of vomiting.
Considering the widespread occurrence of oxalate in nature and its broad impact on a host of organisms, it is surprising that so little is known about the turnover of this important acid. In plants, oxalate oxidase is the most well studied enzyme capable of degrading oxalate, but not all plants possess this activity. Recently, an Acyl Activating Enzyme 3 (AAE3), encoding an oxalyl-CoA synthetase, was identified in Arabidopsis.
View Article and Find Full Text PDFInvasive feral swine (Sus scrofa) cause extensive damage to agricultural and wildlife resources throughout the United States. Development of sodium nitrite as a new, orally delivered toxicant is underway to provide an additional tool to curtail growth and expansion of feral swine populations. A micro-encapsulation coating around sodium nitrite is used to minimize detection by feral swine and maximize stability for the reactive molecule.
View Article and Find Full Text PDFObjective: For intracortical brain-machine interfaces (BMIs), action potential voltage waveforms are often sorted to separate out individual neurons. If these neurons contain independent tuning information, this process could increase BMI performance. However, the sorting of action potentials ('spikes') requires high sampling rates and is computationally expensive.
View Article and Find Full Text PDFPlants acquire nitrogen in the form of amino acids from the soil, and transport proteins located in the plasma membrane of root cells are required for this process. It was found that the Arabidopsis lysine-histidine-like transporter LHT6 is expressed in root cells important for amino acid uptake, including the epidermis, root hairs, and cortex. Transport studies with lht6 mutants using high levels of amino acids demonstrated that LHT6 is in fact involved in amino acid uptake.
View Article and Find Full Text PDFObjective: Motor neuroscience and brain-machine interface (BMI) design is based on examining how the brain controls voluntary movement, typically by recording neural activity and behavior from animal models. Recording technologies used with these animal models have traditionally limited the range of behaviors that can be studied, and thus the generality of science and engineering research. We aim to design a freely-moving animal model using neural and behavioral recording technologies that do not constrain movement.
View Article and Find Full Text PDFObjective: Intracortical brain-computer interface (BCI) decoders are typically retrained daily to maintain stable performance. Self-recalibrating decoders aim to remove the burden this may present in the clinic by training themselves autonomously during normal use but have only been developed for continuous control. Here we address the problem for discrete decoding (classifiers).
View Article and Find Full Text PDFAlthough oxalic acid is common in nature our understanding of the mechanism(s) regulating its turnover remains incomplete. In this study we identify Saccharomyces cerevisiae acyl-activating enzyme 3 (ScAAE3) as an enzyme capable of catalyzing the conversion of oxalate to oxalyl-CoA. Based on our findings we propose that ScAAE3 catalyzes the first step in a novel pathway of oxalate degradation to protect the cell against the harmful effects of oxalate derived from an endogenous process or an environmental source.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2013
Two research communities, motor systems neuroscience and motor prosthetics, examine the relationship between neural activity in the motor cortex and movement. The former community aims to understand how the brain controls and generates movement; the latter community focuses on how to decode neural activity as control signals for a prosthetic cursor or limb. Both have made progress toward understanding the relationship between neural activity in the motor cortex and behavior.
View Article and Find Full Text PDFMost theories of motor cortex have assumed that neural activity represents movement parameters. This view derives from what is known about primary visual cortex, where neural activity represents patterns of light. Yet it is unclear how well the analogy between motor and visual cortex holds.
View Article and Find Full Text PDFOxalate is produced by several catabolic pathways in plants. The best characterized pathway for subsequent oxalate degradation is via oxalate oxidase, but some species, such as Arabidopsis thaliana, have no oxalate oxidase activity. Previously, an alternative pathway was proposed in which oxalyl-CoA synthetase (EC 6.
View Article and Find Full Text PDFCortically-controlled prosthetic systems aim to help disabled patients by translating neural signals from the brain into control signals for guiding prosthetic devices. Recent reports have demonstrated reasonably high levels of performance and control of computer cursors and prosthetic limbs, but to achieve true clinical viability, the long-term operation of these systems must be better understood. In particular, the quality and stability of the electrically-recorded neural signals require further characterization.
View Article and Find Full Text PDFInt IEEE EMBS Conf Neural Eng
January 2011
Neural control of movement is typically studied in constrained environments where there is a reduced set of possible behaviors. This constraint may unintentionally limit the applicability of findings to the generalized case of unconstrained behavior. We hypothesize that examining the unconstrained state across multiple behavioral contexts will lead to new insights into the neural control of movement and help advance the design of neural prosthetic decode algorithms.
View Article and Find Full Text PDFThe circadian clock regulates a wide range of electrophysiological and developmental processes in plants. This paper presents, for the first time, the direct influence of a circadian clock on biologically closed electrochemical circuits in vivo. Here we show circadian variation of the plant responses to electrical stimulation.
View Article and Find Full Text PDF