Domesticated strains of Saccharomyces cerevisiae have adapted to resist copper and sulfite, two chemical stressors commonly used in winemaking. S. paradoxus has not adapted to these chemicals despite being consistently present in sympatry with S.
View Article and Find Full Text PDFDomesticated strains of have adapted to resist copper and sulfite, two chemical stressors commonly used in winemaking. , has not adapted to these chemicals despite being consistently present in sympatry with in vineyards. This contrast represents a case of apparent evolutionary constraints favoring greater adaptive capacity in .
View Article and Find Full Text PDFEvolutionary compromises are thought to be common under fluctuating selection because the mutations that best enable adaptation to one environmental context can often be detrimental to others. Yet, prior experimental work has shown that generalists can sometimes perform as well as specialists in their own environments. Here we use a highly replicated evolutionary experiment ( = 448 asexual lineages of the brewer's yeast) to show that even though fluctuation between two environmental conditions often induces evolutionary compromises (at least early on), it can also help reveal difficult to reach adaptive outcomes that ultimately improve performance in both environments.
View Article and Find Full Text PDFtRNA modifications are crucial in all organisms to ensure tRNA folding and stability, and accurate translation. In both the yeast Saccharomyces cerevisiae and the evolutionarily distant yeast Schizosaccharomyces pombe, mutants lacking certain tRNA body modifications (outside the anticodon loop) are temperature sensitive due to rapid tRNA decay (RTD) of a subset of hypomodified tRNAs. Here we show that for each of two S.
View Article and Find Full Text PDFThe Saccharomyces species have diverged in their thermal growth profile. Both Saccharomyces cerevisiae and Saccharomyces paradoxus grow at temperatures well above the maximum growth temperature of Saccharomyces kudriavzevii and Saccharomyces uvarum but grow more poorly at lower temperatures. In response to thermal shifts, organisms activate a stress response that includes heat shock proteins involved in protein homeostasis and acquisition of thermal tolerance.
View Article and Find Full Text PDFtRNA modifications are crucial in all organisms to ensure tRNA folding and stability, and accurate translation in the ribosome. In both the yeast and the evolutionarily distant yeast , mutants lacking certain tRNA body modifications (outside the anticodon loop) are temperature sensitive due to rapid tRNA decay (RTD) of a subset of hypomodified tRNAs. Here we show that for each of two mutants subject to RTD, mutations in ribosomal protein genes suppress the temperature sensitivity without altering tRNA levels.
View Article and Find Full Text PDFThe species have diverged in their thermal growth profile. Both and grow at temperatures well above the maximum growth temperature of and , but grow more poorly at lower temperatures. In response to thermal shifts, organisms activate a stress response that includes heat shock proteins involved in protein homeostasis and acquisition of thermal tolerance.
View Article and Find Full Text PDFAn organism's upper thermal tolerance is a major driver of its ecology and is a complex, polygenic trait. Given the wide variance in this critical phenotype across the tree of life, it is quite striking that this trait has not proven very evolutionarily labile in experimental evolution studies of microbes. In stark contrast to recent studies, William Henry Dallinger in the 1880s reported increasing the upper thermal limit of microbes he experimentally evolved by >40°C using a very gradual temperature ramping strategy.
View Article and Find Full Text PDFSpecies is the fundamental unit to quantify biodiversity. In recent years, the model yeast Saccharomyces cerevisiae has seen an increased number of studies related to its geographical distribution, population structure, and phenotypic diversity. However, seven additional species from the same genus have been less thoroughly studied, which has limited our understanding of the macroevolutionary events leading to the diversification of this genus over the last 20 million years.
View Article and Find Full Text PDFAfter a COVID-related hiatus, the fifth biennial symposium on Evolution and Core Processes in Gene Regulation met at the Stowers Institute in Kansas City, Missouri July 21 to 24, 2022. This symposium, sponsored by the American Society for Biochemistry and Molecular Biology (ASBMB), featured experts in gene regulation and evolutionary biology. Topic areas covered enhancer evolution, the cis-regulatory code, and regulatory variation, with an overall focus on bringing the power of deep learning (DL) to decipher DNA sequence information.
View Article and Find Full Text PDFCompetitive fitness assays in liquid culture have been a mainstay for characterizing experimental evolution of microbial populations. Growth of microbial strains has also been extensively characterized by colony size and could serve as a useful alternative if translated to per generation measurements of relative fitness. To examine fitness based on colony size, we established a relationship between cell number and colony size for strains of Saccharomyces cerevisiae robotically pinned onto solid agar plates in a high-density format.
View Article and Find Full Text PDFBackground: Worldwide, 10% of babies are born preterm, defined as a live birth before 37 weeks of gestation. Preterm birth is the leading cause of neonatal death, and survivors face lifelong risks of adverse outcomes. New approaches with large sample sizes are needed to identify strategies to predict and prevent preterm birth.
View Article and Find Full Text PDFThe distribution of recombination events along large cereal chromosomes is uneven and is generally restricted to gene-rich telomeric ends. To understand how the lack of recombination affects diversity in the large pericentromeric regions, we analysed deep exome capture data from a final panel of 815 Hordeum vulgare (barley) cultivars, landraces and wild barleys, sampled from across their eco-geographical ranges. We defined and compared variant data across the pericentromeric and non-pericentromeric regions, observing a clear partitioning of diversity both within and between chromosomes and germplasm groups.
View Article and Find Full Text PDFStudy Objective: To compare sleep behavior before and during pregnancy.
Methods: In this prospective cohort study, healthy women were followed from pre-pregnancy until delivery. At pre-pregnancy and each trimester, participants completed validated questionnaires of chronotype and sleep quality and timing, including the Munich ChronoType Questionnaire, Epworth Sleepiness Scale, and Pittsburgh Sleep Quality Index.
Evolution of -regulatory sequences depends on how they affect gene expression and motivates both the identification and prediction of -regulatory variants responsible for expression differences within and between species. While much progress has been made in relating -regulatory variants to expression levels, the timing of gene activation and repression may also be important to the evolution of -regulatory sequences. We investigated allele-specific expression (ASE) dynamics within and between species during the diauxic shift and found appreciable -acting variation in gene expression dynamics.
View Article and Find Full Text PDFThe vaginal microbiome plays an important role in human health and species of vaginal bacteria have been associated with reproductive disease. Strain-level variation is also thought to be important, but the diversity, structure and evolutionary history of vaginal strains is not as well characterized. We developed and validated an approach to measure strain variation from metagenomic data based on SNPs within the core genomes for six species of vaginal bacteria: , , , , and .
View Article and Find Full Text PDFBackground: Experimental evolution of microbes can be used to empirically address a wide range of questions about evolution and is increasingly employed to study complex phenomena ranging from genetic evolution to evolutionary rescue. Regardless of experimental aims, fitness assays are a central component of this type of research, and low-throughput often limits the scope and complexity of experimental evolution studies. We created an experimental evolution system in that utilizes genetic barcoding to overcome this challenge.
View Article and Find Full Text PDFBackground: The composition of bacteria within the vaginal microbiome has garnered a lot of recent attention and has been associated with reproductive health and disease. Despite the common occurrence of yeast (primarily Candida) within the vaginal microbiome, there is still an incomplete picture of relationships between yeast and bacteria (especially lactobacilli), as well as how such associations are governed. Such relationships could be important to a more holistic understanding of the vaginal microbiome and its connection to reproductive health.
View Article and Find Full Text PDFTargeted identification and purging of deleterious genetic variants has been proposed as a novel approach to animal and plant breeding. This strategy is motivated, in part, by the observation that demographic events and strong selection associated with cultivated species pose a "cost of domestication." This includes an increase in the proportion of genetic variants that are likely to reduce fitness.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
September 2019
Pregnancy is influenced by the circadian ("circa" or approximately; diēm or day) system, which coordinates physiology and behavior with predictable daily changes in the environment such as light/dark cycles. For example, most species deliver around a particular time of day. In mammals, circadian rhythms are controlled by the master circadian pacemaker, the suprachiasmatic nucleus.
View Article and Find Full Text PDFUnder the model of micromutationism, phenotypic divergence between species is caused by accumulation of many small-effect changes. While mapping the causal changes to single nucleotide resolution could be difficult for diverged species, genetic dissection via chimeric constructs allows us to evaluate whether a large-effect gene is composed of many small-effect nucleotide changes. In a previously described non-complementation screen, we found an allele difference of , a copper-binding transcription factor, underlies divergence in copper resistance between and Here, we tested whether the allele effect of was caused by multiple nucleotide changes.
View Article and Find Full Text PDFDaily rhythms generated by endogenous circadian mechanisms and synchronized to the light-dark cycle have been implicated in the timing of birth in a wide variety of species. Although chronodisruption (e.g.
View Article and Find Full Text PDFStrains of Saccharomyces cerevisiae used to make beer, bread, and wine are genetically and phenotypically distinct from wild populations associated with trees. The origins of these domesticated populations are not always clear; human-associated migration and admixture with wild populations have had a strong impact on S. cerevisiae population structure.
View Article and Find Full Text PDFA growing body of research suggests that the mitochondrial genome (mtDNA) is important for temperature adaptation. In the yeast genus , species have diverged in temperature tolerance, driving their use in high- or low-temperature fermentations. Here, we experimentally test the role of mtDNA in temperature tolerance in synthetic and industrial hybrids ( × or ), which cold-brew lager beer.
View Article and Find Full Text PDFGenetic analysis of phenotypic differences between species is typically limited to interfertile species. Here, we conducted a genome-wide noncomplementation screen to identify genes that contribute to a major difference in thermal growth profile between two reproductively isolated yeast species, and . The screen identified only a single nuclear-encoded gene with a moderate effect on heat tolerance, but, in contrast, revealed a large effect of mitochondrial DNA (mitotype) on both heat and cold tolerance.
View Article and Find Full Text PDF