Publications by authors named "Justin E Molloy"

Recent advances in light microscopy have enabled single molecules to be imaged and tracked within living cells and this approach is impacting our understanding of cell biology. Computer modeling and simulation are important adjuncts to the experimental cycle since they aid interpretation of experimental results and help refine, test and generate hypotheses. Object-oriented computer modeling is particularly well-suited for simulating random, thermal, movements of individual molecules as they interact with other molecules and subcellular structures, but current models are often limited to idealized systems consisting of unit volumes or planar surfaces.

View Article and Find Full Text PDF

The calcium calmodulin protein kinase II (CaMKII) is a multi-subunit ring assembly with a central hub formed by the association domains. There is evidence for hub polymorphism between and within CaMKII isoforms, but the link between polymorphism and subunit exchange has not been resolved. Here, we present near-atomic resolution cryogenic electron microscopy (cryo-EM) structures revealing that hubs from the α and β isoforms, either standalone or within an β holoenzyme, coexist as 12 and 14 subunit assemblies.

View Article and Find Full Text PDF

The binding of calcium/calmodulin (CAM) to calcium/calmodulin-dependent protein kinase II (CaMKII) initiates an ATP-driven cascade that triggers CaMKII autophosphorylation. The autophosphorylation in turn increases the CaMKII affinity for CAM. Here, we studied the ATP dependence of CAM association with the actin-binding CaMKIIβ isoform using single-molecule total internal reflection fluorescence microscopy.

View Article and Find Full Text PDF

Poly(ADP-ribose) polymerases (PARPs) play key roles in DNA damage repair pathways in eukaryotic cells. Human PARPs 1 and 2 are catalytically activated by damage in the form of both double-strand and single-strand DNA breaks. Recent structural work indicates that PARP2 can also bridge two DNA double-strand breaks (DSBs), revealing a potential role in stabilizing broken DNA ends.

View Article and Find Full Text PDF

The assembly of von Willebrand factor (VWF) into ordered helical tubules within endothelial Weibel-Palade bodies (WPBs) is required for the efficient deployment of the protein at sites of vascular injury. VWF trafficking and storage are sensitive to cellular and environmental stresses that are associated with heart disease and heart failure. Altered storage of VWF manifests as a change in WPB morphology from a rod shape to a rounded shape and is associated with impaired VWF deployment during secretion.

View Article and Find Full Text PDF

Myosin B (MyoB) is a class 14 myosin expressed in all invasive stages of the malaria parasite, Plasmodium falciparum. It is not associated with the glideosome complex that drives motility and invasion of host cells. During red blood cell invasion, MyoB remains at the apical tip of the merozoite but is no longer observed once invasion is completed.

View Article and Find Full Text PDF

In response to vascular damage, P-selectin molecules are secreted onto the surface of cells that line our blood vessels. They then serve as mechanical anchors to capture leucocytes from the blood stream. Here, we track individual P-selectin molecules released at the surface of live endothelial cells following stimulated secretion.

View Article and Find Full Text PDF

Single-molecule techniques such as optical tweezers and fluorescence imaging are powerful tools for probing the biophysics of DNA and DNA-protein interactions. The application of these methods requires efficient approaches for creating designed DNA structures with labels for binding to a surface or microscopic beads. In this paper, we develop a simple and fast technique for making a diverse range of such DNA constructs by combining PCR amplicons and synthetic oligonucleotides using golden gate assembly rules.

View Article and Find Full Text PDF

Malaria is responsible for half a million deaths annually and poses a huge economic burden on the developing world. The mosquito-borne parasites (Plasmodium spp.) that cause the disease depend upon an unconventional actomyosin motor for both gliding motility and host cell invasion.

View Article and Find Full Text PDF

Heterogeneity in cell membrane structure, typified by microdomains with different biophysical and biochemical properties, is thought to impact on a variety of cell functions. Integral membrane proteins act as nanometre-sized probes of the lipid environment and their thermally-driven movements can be used to report local variations in membrane properties. In the current study, we have used total internal reflection fluorescence microscopy (TIRFM) combined with super-resolution tracking of multiple individual molecules, in order to create high-resolution maps of local membrane viscosity.

View Article and Find Full Text PDF

Poly(ADP-ribose) polymerase 1 (PARP1) is an abundant nuclear enzyme that plays important roles in DNA repair, chromatin organization and transcription regulation. Although binding and activation of PARP1 by DNA damage sites has been extensively studied, little is known about how PARP1 binds to long stretches of undamaged DNA and how it could shape chromatin architecture. Here, using single-molecule techniques, we show that PARP1 binds and condenses undamaged, kilobase-length DNA subject to sub-piconewton mechanical forces.

View Article and Find Full Text PDF

Recent advances in light microscopy allow individual biological macromolecules to be visualized in the plasma membrane and cytosol of live cells with nanometer precision and ∼10-ms time resolution. This allows new discoveries to be made because the location and kinetics of molecular interactions can be directly observed in situ without the inherent averaging of bulk measurements. To date, the majority of single-molecule imaging studies have been performed in either unicellular organisms or cultured, and often chemically fixed, mammalian cell lines.

View Article and Find Full Text PDF

We present a fast, inexpensive and robust technique for constructing thin, optically transparent flow-cells with pump-free flow control. Using layers of glass, patterned adhesive tape and polydimethylsiloxane (PDMS) connections, we demonstrate the fabrication of planar devices with chamber height as low as 25 μm and with millimetre-scale (x,y) dimensions for wide-field microscope observation. The method relies on simple benchtop equipment and does not require microfabrication facilities, glass drilling or other workshop infrastructure.

View Article and Find Full Text PDF

Cells respond to changes in their environment through signaling networks that modulate cytoskeleton and membrane organization to coordinate cell-cycle progression, polarized cell growth and multicellular development. Here, we define a novel regulatory mechanism by which the motor activity and function of the fission yeast type one myosin, Myo1, is modulated by TORC2-signalling-dependent phosphorylation. Phosphorylation of the conserved serine at position 742 (S742) within the neck region changes both the conformation of the neck region and the interactions between Myo1 and its associating calmodulin light chains.

View Article and Find Full Text PDF

Calcium-calmodulin-dependent kinase II (CaMKII) has an important role in dendritic spine remodeling upon synaptic stimulation. Using fluorescence video microscopy and image analysis, we investigated the architectural dynamics of rhodamine-phalloidin stabilized filamentous actin (F-actin) networks cross-linked by CaMKII. We used automated image analysis to identify F-actin bundles and crossover junctions and developed a dimensionless metric to characterize network architecture.

View Article and Find Full Text PDF

Bacterial antibiotic resistance is often carried by circular DNA plasmids that are copied separately from the genomic DNA and can be passed to other bacteria, spreading the resistance. The chloramphenicol-resistance plasmid pC221 from Staphylococcus aureus is duplicated by a process called asymmetric rolling circle replication. It is not fully understood how the replication process is regulated but its initiation requires a plasmid-encoded protein called RepD that nicks one strand of the parent plasmid at the double-stranded origin of replication (oriD).

View Article and Find Full Text PDF

Myosin A (MyoA) is a Class XIV myosin implicated in gliding motility and host cell and tissue invasion by malaria parasites. MyoA is part of a membrane-associated protein complex called the glideosome, which is essential for parasite motility and includes the MyoA light chain myosin tail domain-interacting protein (MTIP) and several glideosome-associated proteins (GAPs). However, most studies of MyoA have focused on single stages of the parasite life cycle.

View Article and Find Full Text PDF

Myosin 10 is an actin-based molecular motor that localizes to the tips of filopodia in mammalian cells. To understand how it is targeted to this distinct region of the cell, we have used total internal reflection fluorescence microscopy to study the movement of individual full-length and truncated GFP-tagged molecules. Truncation mutants lacking the motor region failed to localize to filopodial tips but still bound transiently at the plasma membrane.

View Article and Find Full Text PDF

Localization of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) to dendritic spine synapses is determined in part by the actin cytoskeleton. We determined binding of GFP-tagged CaMKII to tag-RFP-labeled actin cytoskeleton within live cells using total internal reflection fluorescence microscopy and single-molecule tracking. Stepwise photobleaching showed that CaMKII formed oligomeric complexes.

View Article and Find Full Text PDF

Weibel-Palade body (WPB)-actin interactions are essential for the trafficking and secretion of von Willebrand factor; however, the molecular basis for this interaction remains poorly defined. Myosin Va (MyoVa or MYO5A) is recruited to WPBs by a Rab27A-MyRIP complex and is thought to be the prime mediator of actin binding, but direct MyRIP-actin interactions can also occur. To evaluate the specific contribution of MyRIP-actin and MyRIP-MyoVa binding in WPB trafficking and Ca(2+)-driven exocytosis, we used EGFP-MyRIP point mutants with disrupted MyoVa and/or actin binding and high-speed live-cell fluorescence microscopy.

View Article and Find Full Text PDF

Myosin-10 is an actin-based molecular motor that participates in essential intracellular processes such as filopodia formation/extension, phagocytosis, cell migration, and mitotic spindle maintenance. To study this motor protein's mechano-chemical properties, we used a recombinant, truncated form of myosin-10 consisting of the first 936 amino acids, followed by a GCN4 leucine zipper motif, to force dimerization. Negative-stain electron microscopy reveals that the majority of molecules are dimeric with a head-to-head contour distance of ∼50 nm.

View Article and Find Full Text PDF

Rhodamine-phalloidin-labeled actin filaments were visualized gliding over a skeletal heavy meromyosin (HMM)-coated surface. Experiments at low filament densities showed that when two filaments collided, their paths were affected in a manner that depended on collision angle. Some collisions resulted in complete alignment of the filament paths; in others, the filaments crossed over one another.

View Article and Find Full Text PDF

The generation of high-affinity antibodies depends on the ability of B cells to extract antigens from the surfaces of antigen-presenting cells. B cells that express high-affinity B cell receptors (BCRs) acquire more antigen and obtain better T cell help. However, the mechanisms by which B cells extract antigen remain unclear.

View Article and Find Full Text PDF

The helicase PcrA unwinds DNA during asymmetric replication of plasmids, acting with an initiator protein, in our case RepD. Detailed kinetics of PcrA activity were measured using bulk solution and a single-molecule imaging technique to investigate the oligomeric state of the active helicase complex, its processivity and the mechanism of unwinding. By tethering either DNA or PcrA to a microscope coverslip surface, unwinding of both linear and natural circular plasmid DNA by PcrA/RepD was followed in real-time using total internal reflection fluorescence microscopy.

View Article and Find Full Text PDF

Ion channels are integral membrane proteins that allow the flow of ions across membranes down their electrochemical gradients and are a major determinant of cellular excitability. They play an important role in a variety of biological processes as diverse as insulin release from beta cells in the pancreas through to cardiac and smooth muscle contraction. We have used total internal reflection fluorescence (TIRF) microscopy to watch ion channels being transported in vesicles along microtubules within the cytoplasm of the cell.

View Article and Find Full Text PDF