Genome editing holds great promise for increasing crop productivity, and there is particular interest in advancing breeding in orphan crops, which are often burdened by undesirable characteristics resembling wild relatives. We developed genomic resources and efficient transformation in the orphan Solanaceae crop 'groundcherry' (Physalis pruinosa) and used clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 nuclease (Cas9) (CRISPR-Cas9) to mutate orthologues of tomato domestication and improvement genes that control plant architecture, flower production and fruit size, thereby improving these major productivity traits. Thus, translating knowledge from model crops enables rapid creation of targeted allelic diversity and novel breeding germplasm in distantly related orphan crops.
View Article and Find Full Text PDFSubtype G has been estimated to represent the fourth most prevalent clade in the HIV-1 pandemic and subtype F is widely circulating in parts of South America (frequently within BF recombinant forms) and in Romania. However, functional envelope clones of these subtypes are lacking, which are needed for studies on antibody-mediated neutralization, coreceptor usage, and efficiency of viral entry inhibitor drugs. Here we report the construction, neutralization properties, and coreceptor usage of HIV-1 functional envelope clones of subtypes G (n = 15) and F (n = 7).
View Article and Find Full Text PDF