Acanthamoeba polyphaga Mimivirus, a complex virus that infects amoeba, was first reported in 2003. It is now known that its DNA genome encodes for nearly 1,000 proteins including enzymes that are required for the biosynthesis of the unusual sugar 4-amino-4,6-dideoxy-d-glucose, also known as d-viosamine. As observed in some bacteria, the pathway for the production of this sugar initiates with a nucleotide-linked sugar, which in the Mimivirus is thought to be UDP-d-glucose.
View Article and Find Full Text PDFFor the field of virology, perhaps one of the most paradigm-shifting events so far in the 21st century was the identification of the giant double-stranded DNA virus that infects amoebae. Remarkably, this virus, known as Mimivirus, has a genome that encodes for nearly 1,000 proteins, some of which are involved in the biosynthesis of unusual sugars. Indeed, the virus is coated by a layer of glycosylated fibers that contain d-glucose, N-acetyl-d-glucosamine, l-rhamnose, and 4-amino-4,6-dideoxy-d-glucose.
View Article and Find Full Text PDFThe exciting discovery of the giant DNA Mimivirus in 2003 challenged the conventional description of viruses in a radical way, and since then, dozens of additional giant viruses have been identified. It has now been demonstrated that the Mimivirus genome encodes for the two enzymes required for the production of the unusual sugar 4-amino-4,6-dideoxy-d-glucose, namely a 4,6-dehydratase and an aminotransferase. In light of our long-standing interest in the bacterial 4,6-dehydratases and in unusual sugars in general, we conducted a combined structural and functional analysis of the Mimivirus 4,6-dehydratase referred to as R141.
View Article and Find Full Text PDF