Both nanoparticles (NPs) and nano-enabled products have become widely available in consumer markets in the last decade. Surface coating including paints, stains, and sealants, have seen large increases in the inclusion of nanomaterials in their formulations to increase UV resistance, hydrophobicity, and scratch resistance. Currently, most literature studying the release of NPs and byproducts from coated surfaces has focused exclusively on lumber.
View Article and Find Full Text PDFUnlabelled: Surface coatings, including paints, stains, and sealants, have recently become a focus of "nano-enabled" consumer product engineering. Specifically, zinc oxide (ZnO) nanoparticles (NPs) have been introduced to surface coatings to increase UV resistance. As more "nano-enabled" products are made available for purchase, questions arise regarding their long-term environmental and human health effects.
View Article and Find Full Text PDFThe Primarily Undergraduate Nanomaterials Cooperative (PUNC) is an organization for research-active faculty studying nanomaterials at Primarily Undergraduate Institutions (PUIs), where undergraduate teaching and research go hand-in-hand. In this perspective, we outline the differences in maintaining an active research group at a PUI compared to an R1 institution. We also discuss the work of PUNC, which focuses on community building, instrument sharing, and facilitating new collaborations.
View Article and Find Full Text PDFSci Total Environ
September 2021
Over the last decade the growth of "nano-enabled" products have exploded in both industrial and direct to consumer applications. One area of interest is surface coatings, including paints, stains and sealants. Large scale applications of the products raise questions about both short- and long-term effects to both human and environmental health.
View Article and Find Full Text PDFAs the market for "nano-enabled" products (NEPs) continues to expand in commercial and industrial applications, there is a critical need to understand conditions that promote release of nanomaterials and their degradation products from NEPs. Moreover, these studies must aim to quantify both the abundance and form (aggregates, ions, hybrids, etc.) of material released from NEPs to produce reasonable estimates of human and environmental exposure.
View Article and Find Full Text PDFMetal and metal oxide nanoparticles (NPs) have been increasingly utilized in many industries to harness their documented antibacterial properties. However, the mechanism(s) of action is still debated in the literature. The aim of this study is to understand how changes in outer membrane charge of a test bacteria alter the antibacterial activity of ZnO NPs of average sizes of 20 nM and 60 nM.
View Article and Find Full Text PDFProduction and marketing of "nano-enabled" products for consumer purchase has continued to expand. However, many questions remain about the potential release and transformation of these nanoparticle (NP) additives from products throughout their lifecycle. In this work, two surface coating products advertised as containing ZnO NPs as active ingredients, were applied to micronized copper azol (MCA) and aqueous copper azol (ACA) pressure treated lumber.
View Article and Find Full Text PDFA major area of growth for "nano-enabled" products has been the addition of nanoparticles (NPs) to surface coatings including paints, stains and sealants. Zinc oxide (ZnO) NPs, long used in sunscreens and sunblocks, have found growing use in surface coating formulations to increase their UV resistance, especially on outdoor products. In this work, ZnO NPs, marketed as an additive to paints and stains, were dispersed in Milli-Q water and a commercial deck stain.
View Article and Find Full Text PDFOne application of nanocopper is as a wood-preserving pesticide in pressure-treated lumber. Recent research has shown that pressure-treated lumber amended with micronized copper azole (MCA), which contains nanosized copper, releases copper under estuarine and marine conditions. The form of copper released (i.
View Article and Find Full Text PDFA major area of growth for "nano-enabled" consumer products have been surface coatings, including paints stains and sealants. Ceria (CeO) nanoparticles (NPs) are of interest as they have been used as additives in these these products to increase UV resistance. Currently, there is a lack of detailed information on the potential release, and speciation (i.
View Article and Find Full Text PDFNMR techniques have been widely used to infer molecular structure, including surfactant aggregation. A combination of optical spectroscopy, proton NMR spectroscopy, and pulsed field gradient NMR (PFG NMR) is used to study the adsorption number for sodium dodecyl sulfate (SDS) with single-wall carbon nanotubes (SWCNTs). Distinct transitions in the NMR chemical shift of SDS are observed in the presence of SWCNTs.
View Article and Find Full Text PDFWith the inclusion of engineered nanomaterials in industrial processes and consumer products, wastewater treatment plants (WWTPs) could serve as a major sink for these emerging contaminants. Previous research has demonstrated that nanomaterials are potentially toxic to microbial communities utilized in biological wastewater treatment (BWT). Copper-based nanoparticles (CuNPs) are of particular interest based on their increasing use in wood treatment, paints, household products, coatings, and byproducts of semiconductor manufacturing.
View Article and Find Full Text PDFChem Commun (Camb)
February 2016
Selective desorption of (6,5) single-wall carbon nanotubes from hydrogels only occurs at specific co-surfactant ratios. High-purity fractions are obtained at this ratio even with long elution times and different total co-surfactant concentrations. These results suggest that each (n,m) type forms a thermodynamically-stable surfactant structure in the co-surfactant solution, enabling high-fidelity separations in a single column.
View Article and Find Full Text PDFOver the past decade, extensive research has been completed on the potential threats of single-wall carbon nanotubes (SWCNTs) to living organisms upon release to aquatic systems. However, these studies have focused primarily on the link between adverse biological effects in exposed test organisms on the length, diameter, and metallic impurity content of SWCNTs. In contrast, few studies have focused on the bioeffects of the different SWCNTs in the as-produced mixture, which contain both metallic (m-SWCNT) and semiconducting (s-SWCNT) species.
View Article and Find Full Text PDFSelective adsorption onto agarose gels has become a powerful method to separate single-walled carbon nanotubes (SWCNTs). A better understanding of the nature of the interactive forces and specific sites responsible for adsorption should lead to significant improvements in the selectivity and yield of these separations. A combination of nonequilibrium and equilibrium studies are conducted to explore the potential role that van der Waals, ionic, hydrophobic, π-π, and ion-dipole interactions have on the selective adsorption between agarose and SWCNTs suspended with sodium dodecyl sulfate (SDS).
View Article and Find Full Text PDF