Publications by authors named "Justin Calabrese"

Article Synopsis
  • Comparing how different countries handled COVID-19 can help us get ready for future pandemics.
  • The study created a model that looks at health, behavior, and economy together to see how different strategies could work in different countries.
  • Results showed that New Zealand's strict rules might have helped with health but hurt the economy a lot, while Switzerland's relaxed rules could have led to a longer pandemic but with different costs.
View Article and Find Full Text PDF

Direct encounters, in which two or more individuals are physically close to one another, are a topic of increasing interest as more and better movement data become available. Recent progress, including the development of statistical tools for estimating robust measures of changes in animals' space use over time, facilitates opportunities to link direct encounters between individuals with the long-term consequences of those encounters. Working with movement data for coyotes (Canis latrans) and grizzly bears (Ursus arctos horribilis), we investigate whether close intraspecific encounters were associated with spatial shifts in the animals' range distributions, as might be expected if one or both of the individuals involved in an encounter were seeking to reduce or avoid conflict over space.

View Article and Find Full Text PDF

Effective personnel scheduling is crucial for organizations to match workload demands. However, staff scheduling is sometimes affected by unexpected events, such as the COVID-19 pandemic, that disrupt regular operations. Limiting the number of on-site staff in the workplace together with regular testing is an effective strategy to minimize the spread of infectious diseases like COVID-19 because they spread mostly through close contact with people.

View Article and Find Full Text PDF

The complex network framework has been successfully used to model interactions between entities in Complex Systems in the Biological Sciences such as Proteomics, Genomics, Neuroscience, and Ecology. Networks of organisms at different spatial scales and in different ecosystems have provided insights into community assembly patterns and emergent properties of ecological systems. In the present work, we investigate two questions pertaining to fish species assembly rules in US river basins, a) if morphologically similar fish species also tend to be phylogenetically closer, and b) to what extent are co-occurring species that are phylogenetically close also morphologically similar? For the first question, we construct a network of Hydrologic Unit Code 8 (HUC8) regions as nodes with interaction strengths (edges) governed by the number of common species.

View Article and Find Full Text PDF

COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions.

View Article and Find Full Text PDF

The severe shortfall in testing supplies during the initial COVID-19 outbreak and ensuing struggle to manage the pandemic have affirmed the critical importance of optimal supply-constrained resource allocation strategies for controlling novel disease epidemics. To address the challenge of constrained resource optimization for managing diseases with complications like pre- and asymptomatic transmission, we develop an integro partial differential equation compartmental disease model which incorporates realistic latent, incubation, and infectious period distributions along with limited testing supplies for identifying and quarantining infected individuals. Our model overcomes the limitations of typical ordinary differential equation compartmental models by decoupling symptom status from model compartments to allow a more realistic representation of symptom onset and presymptomatic transmission.

View Article and Find Full Text PDF

While biological invasions are recognized as a major threat to global biodiversity, determining non-native species' abilities to establish in new areas (species invasiveness) and the vulnerability of those areas to invasions (community invasibility) is challenging. Here, we use trait-based analysis to profile invasive species and quantify the community invasibility for >1,800 North American freshwater fish communities. We show that, in addition to effects attributed to propagule pressure caused by human intervention, species with higher fecundity, longer lifespan and larger size tend to be more invasive.

View Article and Find Full Text PDF

The global extent and temporally asynchronous pattern of COVID-19 spread have repeatedly highlighted the role of international borders in the fight against the pandemic. Additionally, the deluge of high resolution, spatially referenced epidemiological data generated by the pandemic provides new opportunities to study disease transmission at heretofore inaccessible scales. Existing studies of cross-border infection fluxes, for both COVID-19 and other diseases, have largely focused on characterizing overall border effects.

View Article and Find Full Text PDF

Insufficient testing capacity has been a critical bottleneck in the worldwide fight against COVID-19. Optimizing the deployment of limited testing resources has therefore emerged as a keystone problem in pandemic response planning. Here, we use a modified SEIR model to optimize testing strategies under a constraint of limited testing capacity.

View Article and Find Full Text PDF

The SARS-CoV-2 virus has spread around the world with over 100 million infections to date, and currently many countries are fighting the second wave of infections. With neither sufficient vaccination capacity nor effective medication, non-pharmaceutical interventions (NPIs) remain the measure of choice. However, NPIs place a great burden on society, the mental health of individuals, and economics.

View Article and Find Full Text PDF
Article Synopsis
  • Nomadic movements in ungulates, like Mongolian gazelles, are influenced by resource availability, but how they choose these resources is not well understood.
  • Researchers tracked 33 gazelles for up to 3.5 years, analyzing their forage selection with NDVI during the growing season and snow cover in winter.
  • Findings showed that, on a population level, gazelles preferred areas with more forage and intermediate snow cover, while individual analyses indicated random search behavior due to the vast, homogeneous landscape.
View Article and Find Full Text PDF

Accurately quantifying species' area requirements is a prerequisite for effective area-based conservation. This typically involves collecting tracking data on species of interest and then conducting home-range analyses. Problematically, autocorrelation in tracking data can result in space needs being severely underestimated.

View Article and Find Full Text PDF

Encounter rates link movement strategies to intra- and inter-specific interactions, and therefore translate individual movement behavior into higher-level ecological processes. Indeed, a large body of interacting population theory rests on the law of mass action, which can be derived from assumptions of Brownian motion in an enclosed container with exclusively local perception. These assumptions imply completely uniform space use, individual home ranges equivalent to the population range, and encounter dependent on movement paths actually crossing.

View Article and Find Full Text PDF

Background: Speed and distance traveled provide quantifiable links between behavior and energetics, and are among the metrics most routinely estimated from animal tracking data. Researchers typically sum over the straight-line displacements (SLDs) between sampled locations to quantify distance traveled, while speed is estimated by dividing these displacements by time. Problematically, this approach is highly sensitive to the measurement scale, with biases subject to the sampling frequency, the tortuosity of the animal's movement, and the amount of measurement error.

View Article and Find Full Text PDF

Personal protection measures, such as bed nets and repellents, are important tools for the suppression of vector-borne diseases like malaria and Zika, and the ability of health agencies to distribute protection and encourage its use plays an important role in the efficacy of community-wide disease management strategies. Recent modelling studies have shown that a counterintuitive diversity-driven amplification in community-wide disease levels can result from a population's partial adoption of personal protection measures, potentially to the detriment of disease management efforts. This finding, however, may overestimate the negative impact of partial personal protection as a result of implicit restrictive model assumptions regarding host compliance, access to and longevity of protection measures.

View Article and Find Full Text PDF

Tightly synchronized reproduction in vast wildebeest herds underpins the keystone role this iconic species plays in the Serengeti. However, despite decades of study, the proximate synchronizing mechanism remains unknown. Combining a season-long field experiment with simple stochastic process models, we show that females exposed to playback of male rutting vocalizations are over three times more synchronous in their expected time to mating than a control group isolated from all male stimuli.

View Article and Find Full Text PDF

While many animal species exhibit strong conspecific interactions, movement analyses of wildlife tracking datasets still largely focus on single individuals. Multi-individual wildlife tracking studies provide new opportunities to explore how individuals move relative to one another, but such datasets are frequently too sparse for the detailed, acceleration-based analytical methods typically employed in collective motion studies. Here, we address the methodological gap between wildlife tracking data and collective motion by developing a general method for quantifying movement correlation from sparsely sampled data.

View Article and Find Full Text PDF

Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact.

View Article and Find Full Text PDF

Many animals undertake movements that are longer scaled and more directed than their typical home ranging behaviour. These movements include seasonal migrations (e.g.

View Article and Find Full Text PDF

Many natural processes rely on optimizing the success ratio of a search process. We use an experimental setup consisting of a simple online game in which players have to find a target hidden on a board, to investigate how the rounds are influenced by the detection of cues. We focus on the search duration and the statistics of the trajectories traced on the board.

View Article and Find Full Text PDF

Accurately estimating home range and understanding movement behavior can provide important information on ecological processes. Advances in data collection and analysis have improved our ability to estimate home range and movement parameters, both of which have the potential to impact species conservation. Fitting continuous-time movement model to data and incorporating the autocorrelated kernel density estimator (AKDE), we investigated range residency of forty-four jaguars fit with GPS collars across five biomes in Brazil and Argentina.

View Article and Find Full Text PDF

La Crosse encephalitis is a viral disease that has emerged in new locations across the Appalachian region of the United States. Conventional wisdom suggests that ongoing emergence of La Crosse virus (LACV) could stem from the invasive Asian tiger (Aedes albopictus) mosquito. Efforts to prove this, however, are complicated by the numerous transmission routes and species interactions involved in LACV dynamics.

View Article and Find Full Text PDF

Background: Periodicity in activity level (rest/activity cycles) is ubiquitous in nature, but whether and how these periodicities translate into periodic patterns of space use by animals is much less documented. Here we introduce an analytical protocol based on the Lomb-Scargle periodogram (LSP) to facilitate exploration of animal tracking datasets for periodic patterns. The LSP accommodates missing observations and variation in the sampling intervals of the location time series.

View Article and Find Full Text PDF

We introduce a class of maximum-entropy states that naturally includes within it all of the major continuous-time stochastic processes that have been applied to animal movement, including Brownian motion, Ornstein-Uhlenbeck motion, integrated Ornstein-Uhlenbeck motion, a recently discovered hybrid of the previous models, and a new model that describes central-place foraging. We are also able to predict a further hierarchy of new models that will emerge as data quality improves to better resolve the underlying continuity of animal movement. Finally, we also show that Langevin equations must obey a fluctuation-dissipation theorem to generate processes that fall from this class of maximum-entropy distributions when the constraints are purely kinematic.

View Article and Find Full Text PDF

Animal migration is a global phenomenon, but few studies have examined the substantial within- and between-species variation in migration distances. We built a global database of 94 land migrations of large mammalian herbivore populations ranging from 10 to 1638 km. We examined how resource availability, spatial scale of resource variability and body size affect migration distance among populations.

View Article and Find Full Text PDF