Background: Vagus nerve stimulation (VNS) is a FDA approved therapy regularly used to treat a variety of neurological disorders that impact the central nervous system (CNS) including epilepsy and stroke. Putatively, the therapeutic efficacy of VNS results from its action on neuromodulatory centers via projections of the vagus nerve to the solitary tract nucleus. Currently, there is not an established large animal model that facilitates detailed mechanistic studies exploring how VNS impacts the function of the CNS, especially during complex behaviors requiring motor action and decision making.
View Article and Find Full Text PDFElectrical stimulation of the cervical vagus nerve using implanted electrodes (VNS) is FDA-approved for the treatment of drug-resistant epilepsy, treatment-resistant depression, and most recently, chronic ischemic stroke rehabilitation. However, VNS is critically limited by the unwanted stimulation of nearby neck muscles-a result of non-specific stimulation activating motor nerve fibers within the vagus. Prior studies suggested that precise placement of small epineural electrodes can modify VNS therapeutic effects, such as cardiac responses.
View Article and Find Full Text PDFAn increasing number of research teams are investigating the efficacy of brain-computer interface (BCI)-mediated interventions for promoting motor recovery following stroke. A growing body of evidence suggests that of the various BCI designs, most effective are those that deliver functional electrical stimulation (FES) of upper extremity (UE) muscles contingent on movement intent. More specifically, BCI-FES interventions utilize algorithms that isolate motor signals-user-generated intent-to-move neural activity recorded from cerebral cortical motor areas-to drive electrical stimulation of individual muscles or muscle synergies.
View Article and Find Full Text PDFPlacement of the clinical vagus nerve stimulating cuff is a standard surgical procedure based on anatomical landmarks, with limited patient specificity in terms of fascicular organization or vagal anatomy. As such, the therapeutic effects are generally limited by unwanted side effects of neck muscle contractions, demonstrated by previous studies to result from stimulation of (1) motor fibers near the cuff in the superior laryngeal and (2) motor fibers within the cuff projecting to the recurrent laryngeal. Conventional non-invasive ultrasound, where the transducer is placed on the surface of the skin, has been previously used to visualize the vagus with respect to other landmarks such as the carotid and internal jugular vein.
View Article and Find Full Text PDFStroke is a leading cause of acquired long-term upper extremity motor disability. Current standard of care trajectories fail to deliver sufficient motor rehabilitation to stroke survivors. Recent research suggests that use of brain-computer interface (BCI) devices improves motor function in stroke survivors, regardless of stroke severity and chronicity, and may induce and/or facilitate neuroplastic changes associated with motor rehabilitation.
View Article and Find Full Text PDFThe auricular branch of the vagus nerve runs superficially, which makes it a favorable target for non-invasive stimulation techniques to modulate vagal activity. For this reason, there have been many early-stage clinical trials on a diverse range of conditions. These trials often report conflicting results for the same indication.
View Article and Find Full Text PDFSieve electrodes stand poised to deliver the selectivity required for driving advanced prosthetics but are considered inherently invasive and lack the stability required for a chronic solution. This proof of concept experiment investigates the potential for the housing and engagement of a sieve electrode within the medullary canal as part of an osseointegrated neural interface (ONI) for greater selectivity toward improving prosthetic control. are that (A) the addition of a sieve interface to a cuff electrode housed within the medullary canal of the femur as part of an ONI would be capable of measuring efferent and afferent compound nerve action potentials (CNAPs) through a greater number of channels; (B) that signaling improves over time; and (C) that stimulation at this interface generates measurable cortical somatosensory evoked potentials through a greater number of channels.
View Article and Find Full Text PDFAutomated computational analysis techniques utilizing machine learning have been demonstrated to be able to extract more data from different imaging modalities compared to traditional analysis techniques. One new approach is to use machine learning techniques to existing multiphoton imaging modalities to better interpret intrinsically fluorescent cellular signals to characterize different cell types. Fluorescence Lifetime Imaging Microscopy (FLIM) is a high-resolution quantitative imaging tool that can detect metabolic cellular signatures based on the lifetime variations of intrinsically fluorescent metabolic co-factors such as nicotinamide adenine dinucleotide [NAD(P)H].
View Article and Find Full Text PDFA major obstacle to studying resident microglia has been their similarity to infiltrating immune cell types and the lack of unique protein markers for identifying the functional state. Given the role of microglia in all neural diseases and insults, accurate tools for detecting their function beyond morphologic alterations are necessary. We hypothesized that microglia would have unique metabolic fluxes in reduced nicotinamide adenine dinucleotide (NADH) that would be detectable by relative changes in fluorescence lifetime imaging microscopy (FLIM) parameters, allowing for identification of their activation status.
View Article and Find Full Text PDFAdvances in neural engineering have brought about a number of implantable devices for improved brain stimulation and recording. Unfortunately, many of these micro-implants have not been adopted due to issues of signal loss, deterioration, and host response to the device. While glial scar characterization is critical to better understand the mechanisms that affect device functionality or tissue viability, analysis is frequently hindered by immunohistochemical tissue processing methods that result in device shattering and tissue tearing artifacts.
View Article and Find Full Text PDFObjective: Clinical data suggest that efficacious vagus nerve stimulation (VNS) is limited by side effects such as cough and dyspnea that have stimulation thresholds lower than those for therapeutic outcomes. VNS side effects are putatively caused by activation of nearby muscles within the neck, via direct muscle activation or activation of nerve fibers innervating those muscles. Our goal was to determine the thresholds at which various VNS-evoked effects occur in the domestic pig—an animal model with vagus anatomy similar to human—using the bipolar helical lead deployed clinically.
View Article and Find Full Text PDFIntroduction: Vagus nerve stimulation (VNS) is an FDA-approved neuromodulatory treatment used in the clinic today for epilepsy, depression, and cluster headaches. Moreover, evidence in the literature has led to a growing list of possible clinical indications, with several small clinical trials applying VNS to treat conditions ranging from neurodegenerative diseases to arthritis, anxiety disorders, and obesity. Despite the growing list of therapeutic applications, the fundamental mechanisms by which VNS achieves its beneficial effects are poorly understood.
View Article and Find Full Text PDFBackground: Outcome assessments that evaluate post-transection nerve repair do not often correlate with one another. The aims of this study were twofold: to compare four nerve repair techniques with each other and incorporate both negative and positive control groups and to identify possible correlations between outcome assessments.
Materials And Methods: Sciatic nerve transection and repair was performed in Lewis rats using one of the following techniques: interrupted epineural, running epineural, grouped fascicular, epineural with absorbable type I collagen wrap, and high tension for incorporation of a negative control.
Objective: Given current clinical interest in vagus nerve stimulation (VNS), there are surprisingly few studies characterizing the anatomy of the vagus nerve in large animal models as it pertains to on-and off-target engagement of local fibers. We sought to address this gap by evaluating vagal anatomy in the pig, whose vagus nerve organization and size approximates the human vagus nerve.
Approach: Here we combined microdissection, histology, and immunohistochemistry to provide data on key features across the cervical vagus nerve in a swine model, and compare our results to other animal models (mouse, rat, dog, non-human primate) and humans.
Introduction: While debate persists over how to best prevent or treat amputation neuromas, the more pressing question of how to best marry residual nerves to state-of-the-art robotic prostheses for naturalistic control of a replacement limb has come to the fore. One potential solution involves the transposition of terminal nerve ends into the medullary canal of long bones, creating the neural interface within the bone. Nerve transposition into bone is a long-practiced, clinically relevant treatment for painful neuromas.
View Article and Find Full Text PDFBackground: A number of peripheral nerve interfaces for nerve stimulation and recording exist for the purpose of controlling neural prostheses, each with a set of advantages and disadvantages. The ultimate goal of neural prostheses is a seamless bi-directional communication between the peripheral nervous system and the prosthesis. Here, we developed an interfacing electrode array, the "cuff and sieve electrodes" (CASE), integrating microfabricated cuff and sieve electrodes to a single unit, to decrease the weaknesses faced by these electrode designs in isolation.
View Article and Find Full Text PDFBackground: Chronic stability and high degrees of selectivity are both essential but somewhat juxtaposed components for creating an implantable bi-directional PNI capable of controlling of a prosthetic limb. While the more invasive implantable electrode arrays provide greater specificity, they are less stable over time due to compliance mismatch with the dynamic soft tissue environment in which the interface is created.
New Method: This paper takes the surgical approach of transposing nerves into bone to create neural interface within the medullary canal of long bones, an osseointegrated neural interface, to provide greater stability for implantable electrodes.
Implanted neural stimulation and recording devices hold vast potential to treat a variety of neurological conditions, but the invasiveness, complexity, and cost of the implantation procedure greatly reduce access to an otherwise promising therapeutic approach. To address this need, a novel electrode that begins as an uncured, flowable prepolymer that can be injected around a neuroanatomical target to minimize surgical manipulation is developed. Referred to as the Injectrode, the electrode conforms to target structures forming an electrically conductive interface which is orders of magnitude less stiff than conventional neuromodulation electrodes.
View Article and Find Full Text PDFThe studies described in this paper for the first time characterize the acute and chronic performance of optically transparent thin-film micro-electrocorticography (μECoG) grids implanted on a thinned skull as both an electrophysiological complement to existing thinned skull preparation for optical recordings/manipulations, and a less invasive alternative to epidural or subdurally placed μECoG arrays. In a longitudinal chronic study, μECoG grids placed on top of a thinned skull maintain impedances comparable to epidurally placed μECoG grids that are stable for periods of at least 1 month. Optogenetic activation of cortex is also reliably demonstrated through the optically transparent μECoG grids acutely placed on the thinned skull.
View Article and Find Full Text PDFThe trigeminal nerve (cranial nerve V), along with other cranial nerves, has in recent years become a popular target for bioelectric medicine due to its direct access to neuromodulatory centers. Trigeminal nerve stimulation is currently being evaluated as an adjunctive treatment for various neurodegenerative and neuropsychiatric diseases despite the mechanism of action being in question. In this work, we describe the development and validation of a novel neural interface for the infraorbital branch of the trigeminal nerve utilizing a thin film (TF) nerve cuff containing multiple electrode sites allowing for more selective stimulation of the nerve.
View Article and Find Full Text PDFObjective: Electrocorticography (ECoG) is commonly used to map epileptic foci and to implement brain-computer interfaces. Understanding the spatiotemporal correspondence between potentials recorded from the brain's surface and the firing patterns of neurons within the cortex would inform the interpretation of ECoG signals and the design of (microfabricated) micro-ECoG electrode arrays. Based on the theory that synaptic potentials generated by neurons firing in synchrony superimpose to generate local field potentials (LFPs), we hypothesized that neurons in the cortex would fire at preferential phases of the micro-ECoG signal in a spatially dependent way.
View Article and Find Full Text PDFBackground: Bioelectric medicine seeks to modulate neural activity via targeted electrical stimulation to treat disease. Recent clinical evidence supports trigeminal nerve stimulation as a bioelectric treatment for several neurological disorders; however, the mechanisms of trigeminal nerve stimulation and potential side effects remain largely unknown. The goal of this study is to optimize the methodology and reproducibility of neural interface implantation for mechanistic studies in rodents.
View Article and Find Full Text PDFLoss of motor function is a common deficit following stroke insult and often manifests as persistent upper extremity (UE) disability which can affect a survivor's ability to participate in activities of daily living. Recent research suggests the use of brain-computer interface (BCI) devices might improve UE function in stroke survivors at various times since stroke. This randomized crossover-controlled trial examines whether intervention with this BCI device design attenuates the effects of hemiparesis, encourages reorganization of motor related brain signals (EEG measured sensorimotor rhythm desynchronization), and improves movement, as measured by the Action Research Arm Test (ARAT).
View Article and Find Full Text PDFObjective: Recovery of voluntary gait after spinal cord injury (SCI) requires the restoration of effective motor cortical commands, either by means of a mechanical connection to the limbs, or by restored functional connections to muscles. The latter approach might use functional electrical stimulation (FES), driven by cortical activity, to restore voluntary movements. Moreover, there is evidence that this peripheral stimulation, synchronized with patients' voluntary effort, can strengthen descending projections and recovery.
View Article and Find Full Text PDF