Publications by authors named "Justin C Havird"

Mitonuclear coevolution is common in eukaryotes, but bivalve lineages that have doubly uniparental inheritance (DUI) of mitochondria may be an interesting example. In this system, females transmit mtDNA (F mtDNA) to all offspring, while males transmit a different mtDNA (M mtDNA) solely to their sons. Molecular evolution and functional data suggest oxidative phosphorylation (OXPHOS) genes encoded in M mtDNA evolve under relaxed selection due to their function being limited to sperm only (vs.

View Article and Find Full Text PDF

Nuclear and organellar genomes can evolve at vastly different rates despite occupying the same cell. In most bilaterian animals, mitochondrial DNA (mtDNA) evolves faster than nuclear DNA, whereas this trend is generally reversed in plants. However, in some exceptional angiosperm clades, mtDNA substitution rates have increased up to 5,000-fold compared with closely related lineages.

View Article and Find Full Text PDF

Mitochondrial (mt) genes are the subject of many adaptive hypotheses due to the key role of mitochondria in energy production and metabolism. One widespread adaptive hypothesis is that selection imposed by life at high elevation leads to the rapid fixation of beneficial alleles in mtDNA, reflected in the increased rates of mtDNA evolution documented in many high-elevation species. However, the assumption that fast mtDNA evolution is caused by positive, rather than relaxed purifying selection has rarely been tested.

View Article and Find Full Text PDF

The evolution of reproductive barriers is the first step in the formation of new species and can help us understand the diversification of life on Earth. These reproductive barriers often take the form of hybrid incompatibilities, in which alleles derived from two different species no longer interact properly in hybrids. Theory predicts that hybrid incompatibilities may be more likely to arise at rapidly evolving genes and that incompatibilities involving multiple genes should be common, but there has been sparse empirical data to evaluate these predictions.

View Article and Find Full Text PDF

Genetic elements encoded in nuclear DNA determine the sex of an individual in many animals. In certain bivalve lineages that possess doubly uniparental inheritance (DUI), mitochondrial DNA (mtDNA) has been hypothesized to contribute to sex determination. In these cases, females transmit a female mtDNA to all offspring, while male mtDNA (M mtDNA) is transmitted only from fathers to sons.

View Article and Find Full Text PDF

AbstractDisentangling different types of selection is a common goal in molecular evolution. Elevated / ratios (the ratio of nonsynonymous to synonymous substitution rates) in focal lineages are often interpreted as signs of positive selection. Paradoxically, relaxed purifying selection can also result in elevated / ratios, but tests to distinguish these two causes are seldomly implemented.

View Article and Find Full Text PDF

Genetic elements encoded in nuclear DNA determine the sex of an individual in many animals. In bivalves, however, mitochondrial DNA (mtDNA) has been hypothesized to contribute to sex determination in lineages that possess doubly uniparental inheritance (DUI). In these cases, females transmit a female mtDNA (F mtDNA) to all offspring, while male mtDNA (M mtDNA) is transmitted only from fathers to sons.

View Article and Find Full Text PDF

In most animals, mitochondrial DNA is strictly maternally inherited and non-recombining. One exception to this pattern is called doubly uniparental inheritance (DUI), a phenomenon involving the independent transmission of female and male mitochondrial genomes. DUI is known only from the molluskan class Bivalvia.

View Article and Find Full Text PDF

Genomic resources across squamate reptiles (lizards and snakes) have lagged behind other vertebrate systems and high-quality reference genomes remain scarce. Of the 23 chromosome-scale reference genomes across the order, only 12 of the ~60 squamate families are represented. Within geckos (infraorder Gekkota), a species-rich clade of lizards, chromosome-level genomes are exceptionally sparse representing only two of the seven extant families.

View Article and Find Full Text PDF

Genomic resources across squamate reptiles (lizards and snakes) have lagged behind other vertebrate systems and high-quality reference genomes remain scarce. Of the 23 chromosome-scale reference genomes across the order, only 12 of the ~60 squamate families are represented. Within geckos (infraorder Gekkota), a species-rich clade of lizards, chromosome-level genomes are exceptionally sparse representing only two of the seven extant families.

View Article and Find Full Text PDF

Mitochondrial (mt) and nuclear-encoded proteins are integrated in aerobic respiration, requiring co-functionality among gene products from fundamentally different genomes. Different evolutionary rates, inheritance mechanisms, and selection pressures set the stage for incompatibilities between interacting products of the two genomes. The mitonuclear coevolution hypothesis posits that incompatibilities may be avoided if evolution in one genome selects for complementary changes in interacting genes encoded by the other genome.

View Article and Find Full Text PDF

When new land is created, initial microbial colonization lays the foundation for further ecological succession of plant and animal communities. Primary microbial succession of new aquatic habitats formed during volcanic activity has received little attention. The anchialine ecosystem, which includes coastal ponds in young lava flows, offers an opportunity to examine this process.

View Article and Find Full Text PDF

Animal and plant species exhibit an astonishing diversity of sexual systems, including environmental and genetic determinants of sex, with the latter including genetic material in the mitochondrial genome. In several hermaphroditic plants for example, sex is determined by an interaction between mitochondrial cytoplasmic male sterility (CMS) genes and nuclear restorer genes. Specifically, CMS involves aberrant mitochondrial genes that prevent pollen development and specific nuclear genes that restore it, leading to a mixture of female (male-sterile) and hermaphroditic individuals in the population (gynodioecy).

View Article and Find Full Text PDF

In most eukaryotes, oxidative phosphorylation (OXPHOS) is the main energy production process and it involves both mitochondrial and nuclear genomes. The close interaction between the two genomes is critical for the coordinated function of the OXPHOS process. Some bivalves show doubly uniparental inheritance (DUI) of mitochondria, where two highly divergent mitochondrial genomes, one inherited through eggs (F-type) and the other through sperm (M-type), coexist in the same individual.

View Article and Find Full Text PDF

Rapid mutation rates are typical of mitochondrial genomes (mtDNAs) in animals, but it is not clear why. The difficulty of obtaining measurements of mtDNA mutation that are not biased by natural selection has stymied efforts to distinguish between competing hypotheses about the causes of high mtDNA mutation rates. Several studies which have measured mtDNA mutations in nematodes have yielded small datasets with conflicting conclusions about the relative abundance of different substitution classes (i.

View Article and Find Full Text PDF

Background: Mitochondrial DNA (mtDNA) codes for products necessary for electron transport and mitochondrial gene translation. mtDNA mutations can lead to human disease and influence organismal fitness. The PolG mutator mouse lacks mtDNA proofreading function and rapidly accumulates mtDNA mutations, making it a model for examining the causes and consequences of mitochondrial mutations.

View Article and Find Full Text PDF

Mitonuclear coevolution is an important prerequisite for efficient energy production in eukaryotes. However, many bivalve taxa experience doubly uniparental inheritance (DUI) and have sex-specific mitochondrial (mt) genomes, providing a challenge for mitonuclear coevolution. We examined possible mechanisms to reconcile mitonuclear coevolution with DUI.

View Article and Find Full Text PDF

Mitochondrial (mt) gene sequences have been widely used to infer phylogeny in animals. The relative order of mt genes in the mitogenome can also be a useful marker for evolution, but the propensity of mt gene rearrangements vary tremendously among taxa. Ticks and mites in Acari exemplify this trend as some families retain the ancestral arthropod gene order, while others show highly divergent gene orders.

View Article and Find Full Text PDF

In Metazoa, four out of five complexes involved in oxidative phosphorylation (OXPHOS) are formed by subunits encoded by both the mitochondrial (mtDNA) and nuclear (nuDNA) genomes, leading to the expectation of mitonuclear coevolution. Previous studies have supported coadaptation of mitochondria-encoded (mtOXPHOS) and nuclear-encoded OXPHOS (nuOXPHOS) subunits, often specifically interpreted with regard to the "nuclear compensation hypothesis," a specific form of mitonuclear coevolution where nuclear genes compensate for deleterious mitochondrial mutations due to less efficient mitochondrial selection. In this study, we analyzed patterns of sequence evolution of 79 OXPHOS subunits in 31 bivalve species, a taxon showing extraordinary mtDNA variability and including species with "doubly uniparental" mtDNA inheritance.

View Article and Find Full Text PDF

A fundamental gap in climate change vulnerability research is an understanding of the relative thermal sensitivity of ectotherms. Aquatic insects are vital to stream ecosystem function and biodiversity but insufficiently studied with respect to their thermal physiology. With global temperatures rising at an unprecedented rate, it is imperative that we know how aquatic insects respond to increasing temperature and whether these responses vary among taxa, latitudes, and elevations.

View Article and Find Full Text PDF

Mitochondrial (mt) respiration depends on proteins encoded both by the mitochondrial and nuclear genomes. Variation in mt-DNA mutation rates exists across eukaryotes, although the functional consequences of elevated mt mutation rates in some lineages remain underexplored. In the angiosperm genus , closely related, ecologically similar species have either 'fast' or 'slow' mt-DNA mutation rates.

View Article and Find Full Text PDF

Temperature is one of the most important environmental factors driving the genome-to-phenome relationship. Metabolic rates and related biological processes are predicted to increase with temperature due to the biophysical laws of chemical reactions. However, selection can also act on these processes across scales of biological organization, from individual enzymes to whole organisms.

View Article and Find Full Text PDF

Red coloration is a widely distributed phenotype among animals, yet the pigmentary and genetic bases for this phenotype have been described in relatively few taxa. Here we show that the Hawaiian endemic anchialine shrimp is red because of the accumulation of astaxanthin. Laboratory colonies of phylogenetically distinct lineages of have colony-specific amounts of astaxanthin that are developmentally, and likely genetically, fixed.

View Article and Find Full Text PDF
Article Synopsis
  • * A study focused on the unique layered microbial crusts in Hawaii's anchialine ecosystem revealed that deeper layers had more diverse microbial communities, with more similarity within geographic sites than between different sites.
  • * The research identified distinct oxygenated and anoxygenated niches in the crust layers, suggesting that environmental factors have driven the similar structures of these communities despite geographic differences.
View Article and Find Full Text PDF

Mitochondria provide the vast majority of cellular energy available to eukaryotes. Therefore, adjustments in mitochondrial function through genetic changes in mitochondrial or nuclear-encoded genes might underlie environmental adaptation. Environmentally induced plasticity in mitochondrial function is also common, especially in response to thermal acclimation in aquatic systems.

View Article and Find Full Text PDF