Nature's two redox cofactors, nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP), are held at different reduction potentials, driving catabolism and anabolism in opposite directions. In biomanufacturing, there is a need to flexibly control redox reaction direction decoupled from catabolism and anabolism. We established nicotinamide mononucleotide (NMN) as a noncanonical cofactor orthogonal to NAD(P).
View Article and Find Full Text PDFProtein stability plays a crucial role in a variety of applications, such as food processing, therapeutics, and the identification of pathogenic mutations. Engineering campaigns commonly seek to improve protein stability, and there is a strong interest in streamlining these processes to enable rapid optimization of highly stabilized proteins with fewer iterations. In this work, we explore utilizing a mega-scale dataset to develop a protein language model optimized for stability prediction.
View Article and Find Full Text PDFTerpenes are a diverse class of natural products which have long been sought after for their chemical properties as medicine, perfumes, and for food flavoring. Computational docking studies of terpene mechanisms have been a challenge due to the lack of strong directing groups which many docking programs rely on. In this chapter, we dive into our computational method Terdockin (Terpene-Docking) as a successful methodology in modeling terpene synthase mechanisms.
View Article and Find Full Text PDFWhen grapes are exposed to wildfire smoke, certain smoke-related volatile phenols (VPs) can be absorbed into the fruit, where they can be then converted into volatile-phenol (VP) glycosides through glycosylation. These volatile-phenol glycosides can be particularly problematic from a winemaking standpoint as they can be hydrolyzed, releasing volatile phenols, which can contribute to smoke-related off-flavors. Current methods for quantitating these volatile-phenol glycosides present several challenges, including the requirement of expensive capital equipment, limited accuracy due to the molecular complexity of the glycosides, and the utilization of harsh reagents.
View Article and Find Full Text PDFIntroduction: Historically, prioritizing abundant food production often resulted in overlooking nutrient quality and bioavailability, however, environmental concerns have now propelled sustainable nutrition and health efficacy to the forefront of global attention. In fact, increasing demand for protein is the major challenge facing the food system in the 21st century with an estimation that 70% more food is needed by 2050. This shift has spurred interest in plant-based proteins for their sustainability and health benefits, but most alternative sources of protein are poorly digestible.
View Article and Find Full Text PDFNK cells are a key focus in immuno-oncology, based on their ability to eliminate malignant cells without prior sensitization. Dogs are valuable models for translational immunotherapy studies, especially for NK cells, where critical species differences exist between mice and humans. Given that the mechanism for recognition of "self" by canine NK cells is currently unknown, we sought to evaluate expression of Ly49 in canine NK cells using in silico and high-throughput techniques.
View Article and Find Full Text PDFDue to the rampant rise in obesity and diabetes, consumers are desperately seeking for ways to reduce their sugar intake, but to date there are no options that are both accessible and without sacrifice of palatability. One of the most promising new ingredients in the food system as a non-nutritive sugar substitute with near perfect palatability is D-psicose. D-psicose is currently produced using an in vitro enzymatic isomerization of D-fructose, resulting in low yield and purity, and therefore requiring substantial downstream processing to obtain a high purity product.
View Article and Find Full Text PDFNatural metabolism relies on chemical compartmentalization of two redox cofactors, NAD and NADP, to orchestrate life-essential redox reaction directions. However, in whole cells the reliance on these canonical cofactors limits flexible control of redox reaction direction as these reactions are permanently tied to catabolism or anabolism. In cell-free systems, NADP is too expensive in large scale.
View Article and Find Full Text PDFOpioids such as Morphine, Codeine, Hydrocodone, and Oxycodone target the μ-opioid receptor, a G-protein-coupled receptor (GPCR), blocking the transmission of nociceptive signals. In this study, four opioids were analyzed for ADMET properties and molecular interactions with a GPCR crystal structure (PDB ID: 8EF6). This aided in the computational design of two novel drug candidates with improved docking scores and ADMET properties when compared to Hydrocodone.
View Article and Find Full Text PDFThere is an urgent requirement to minimize food waste and create more sustainable food systems that address global increases in malnutrition and hunger. The nutritional value of brewers' spent grain (BSG) makes it attractive for upcycling into value-added ingredients rich in protein and fiber having a lower environmental impact than comparable plant-based ingredients. BSG is predictably available in large quantities globally and can therefore play a role in addressing hunger in the developing world via the fortification of humanitarian food aid products.
View Article and Find Full Text PDFEngaging computational tools for protein design is gaining traction in the enzyme engineering community. However, current design and modeling algorithms have limited functionality predictive capacities for enzymes due to limitations of the dataset in terms of size and data quality. This study aims to expand training datasets for improved algorithm development with the addition of five rationally designed single-point enzyme variants.
View Article and Find Full Text PDFNoncanonical cofactor biomimetics (NCBs) such as nicotinamide mononucleotide (NMN) provide enhanced scalability for biomanufacturing. However, engineering enzymes to accept NCBs is difficult. Here, we establish a growth selection platform to evolve enzymes to utilize NMN-based reducing power.
View Article and Find Full Text PDFThe devastating human pathogen (Mtb) is able to parasitize phagosomal compartments within alveolar macrophage cells due, in part, to the activity of its cell-surface lipids. Prominent among these is 1-tuberculosinyl-adenosine (1-TbAd), a derivative of the diterpenoid tuberculosinyl (halima-5,13-dienyl) diphosphate produced by the class II diterpene cyclase encoded by Rv3377c, termed here MtHPS. Given the demonstrated ability of 1-TbAd to act as a virulence factor for Mtb and the necessity for Rv3377c for its production, there is significant interest in MtHPS activity.
View Article and Find Full Text PDFNoncanonical redox cofactors are attractive low-cost alternatives to nicotinamide adenine dinucleotide (phosphate) (NAD(P)) in biotransformation. However, engineering enzymes to utilize them is challenging. Here, we present a high-throughput directed evolution platform which couples cell growth to the in vivo cycling of a noncanonical cofactor, nicotinamide mononucleotide (NMN).
View Article and Find Full Text PDFNoncanonical cofactors such as nicotinamide mononucleotide (NMN) supplant the electron-transfer functionality of the natural cofactors, NAD(P), at a lower cost in cell-free biomanufacturing and enable orthogonal electron delivery in whole-cell metabolic engineering. Here, we redesign the high-flux Embden-Meyerhof-Parnas (EMP) glycolytic pathway to generate NMN-based reducing power, by engineering glyceraldehyde-3-phosphate dehydrogenase ( GapN) to utilize NMN. Through iterative rounds of rational design, we discover the variant GapN Penta (P179K-F153S-S330R-I234E-G210Q) with high NMN-dependent activity and GapN Ortho (P179K-F153S-S330R-I234E-G214E) with ~3.
View Article and Find Full Text PDFGlobally, we are failing to meet numerous nutritional, health, and environmental targets linked to food. Defining food composition in its full chemical and quantitative diversity is central to data-driven decision making for supporting nutrition and sustainable diets. "Foodomics"-the application of omics-technology to characterize and quantify biomolecules to improve wellbeing-has the potential to comprehensively elucidate what is in food, how this composition varies across the food system, and how diet composition as an ensemble of foods guides outcomes for nutrition, health, and sustainability.
View Article and Find Full Text PDFBackground: Klebsiella pneumoniae contains an endogenous isobutanol synthesis pathway. The ipdC gene annotated as an indole-3-pyruvate decarboxylase (Kp-IpdC), was identified to catalyze the formation of isobutyraldehyde from 2-ketoisovalerate.
Results: Compared with 2-ketoisovalerate decarboxylase from Lactococcus lactis (KivD), a decarboxylase commonly used in artificial isobutanol synthesis pathways, Kp-IpdC has an 2.
The prediction of sites of epoxidation by cytochrome P450s during metabolism is particularly important in drug design, as epoxides are capable of alkylating biological macromolecules. Reliable methods are needed to quantitatively predict P450-mediated epoxidation barriers for inclusion in high-throughput screening campaigns alongside protein-ligand docking. Utilizing the fractional occupation number weighted density (FOD) and orbital-weighted Fukui index () as descriptors of local reactivity and a data set of 36 alkene epoxidation barriers computed with density functional theory (DFT), we developed and validated a multiple linear regression model for the reliable estimation of epoxidation barriers using only substrate structures as input.
View Article and Find Full Text PDFBiomolecular structure drives function, and computational capabilities have progressed such that the prediction and computational design of biomolecular structures is increasingly feasible. Because computational biophysics attracts students from many different backgrounds and with different levels of resources, teaching the subject can be challenging. One strategy to teach diverse learners is with interactive multimedia material that promotes self-paced, active learning.
View Article and Find Full Text PDFAnthrax is considered one of the most dangerous bioweapon agents, and concern about multidrug-resistant strains has led to the development of alternative therapeutic approaches that target the antiphagocytic capsule, an essential virulence determinant of , the causative agent. Capsule depolymerase is a γ-glutamyltransferase that anchors the capsule to the cell wall of . Encapsulated strains of can be treated with recombinant capsule depolymerase to enzymatically remove the capsule and promote phagocytosis and killing by human neutrophils.
View Article and Find Full Text PDFEach year vast international resources are wasted on irreproducible research. The scientific community has been slow to adopt standard software engineering practices, despite the increases in high-dimensional data, complexities of workflows, and computational environments. Here we show how scientific software applications can be created in a reproducible manner when simple design goals for reproducibility are met.
View Article and Find Full Text PDFThe color of food is critical to the food and beverage industries, as it influences many properties beyond eye-pleasing visuals including flavor, safety, and nutritional value. Blue is one of the rarest colors in nature's food palette-especially a cyan blue-giving scientists few sources for natural blue food colorants. Finding a natural cyan blue dye equivalent to FD&C Blue No.
View Article and Find Full Text PDFInterest in animal cell-based meat (ACBM) or laboratory-grown meat has been increasing; however, the economic viability of these potential products has not been thoroughly vetted. Recent studies suggest monoclonal antibody production technology can be adapted for the industrialization of ACBM production. This study provides a scenario-based assessment of the projected cost per kilogram of ACBM produced in the United States based on cellular metabolic requirements and process/chemical engineering conventions.
View Article and Find Full Text PDFTerpenes make up the largest class of natural products, with extensive chemical and structural diversity. Diterpenes, mostly isolated from plants and rarely prokaryotes, exhibit a variety of important biological activities and valuable applications, including providing antitumor and antibiotic pharmaceuticals. These natural products are constructed by terpene synthases, a class of enzymes that catalyze one of the most complex chemical reactions in biology: converting simple acyclic oligo-isoprenyl diphosphate substrates to complex polycyclic products via carbocation intermediates.
View Article and Find Full Text PDF