Publications by authors named "Justin B Lemberg"

The axial columns of the earliest limbed vertebrates show distinct patterns of regionalization as compared to early tetrapodomorphs. Included among their novel features are sacral ribs, which provide linkage between the vertebral column and pelvis, contributing to body support and propulsion by the hindlimb. Data on the axial skeletons of the closest relatives of limbed vertebrates are sparce, with key features of specimens potentially covered by matrix.

View Article and Find Full Text PDF

A fundamental gap in the study of the origin of limbed vertebrates lies in understanding the morphological and functional diversity of their closest relatives. Whereas analyses of the elpistostegalians Panderichthys rhombolepis, Tiktaalik roseae and Elpistostege watsoni have revealed a sequence of changes in locomotor, feeding and respiratory structures during the transition, an isolated bone, a putative humerus, has controversially hinted at a wider range in form and function than now recognized. Here we report the discovery of a new elpistostegalian from the Late Devonian period of the Canadian Arctic that shows surprising disparity in the group.

View Article and Find Full Text PDF

Changes to feeding structures are a fundamental component of the vertebrate transition from water to land. Classically, this event has been characterized as a shift from an aquatic, suction-based mode of prey capture involving cranial kinesis to a biting-based feeding system utilizing a rigid skull capable of capturing prey on land. Here we show that a key intermediate, , was capable of cranial kinesis despite significant restructuring of the skull to facilitate biting and snapping.

View Article and Find Full Text PDF

The fin-to-limb transition was marked by the origin of digits and the loss of dermal fin rays. Paleontological research into this transformation has focused on the evolution of the endoskeleton, with little attention paid to fin ray structure and function. To address this knowledge gap, we study the dermal rays of the pectoral fins of 3 key tetrapodomorph taxa- (Rhizodontida), (Tristichopteridae), and (Elpistostegalia)-using computed tomography.

View Article and Find Full Text PDF

Living gars are a small clade of seven species that occupy an important position on the actinopterygian phylogenetic tree as members of Holostei, sister-group to teleosts, and exhibit many plesiomorphic traits used to interpret and reconstruct early osteichthyan feeding mechanisms. Previous studies of gar feeding kinematics have focused on the ram-based, lateral-snapping mode of prey capture found in the narrow-snouted Lepisosteus genus, whereas this study focuses on a member of the broad-snouted Atractosteus sister-genus, the alligator gar (Atractosteus spatula, Lacépède, 1803). High-speed videography reveals that the feeding system of alligator gars is capable of rapid expansion from anterior to posterior, timed in a way to generate suction, counteract the effects of a bow-wave during ram-feeding, and direct a unidirectional flow of water through the feeding system.

View Article and Find Full Text PDF

The functional effects of bone and suture stiffness were considered here using finite element models representing three different theoretical phenotypes of an Alligator mississippiensis mandible. The models were loaded using force estimates derived from muscle architecture in dissected specimens, constrained at the 18th and 19th teeth in the upper jaw and 19th tooth of the lower jaw, as well as at the quadrate-articular joint. Stiffness was varied systematically in each theoretical phenotype.

View Article and Find Full Text PDF