Placental-derived products have been used since the early 1900s for wound applications and have shown clinical utility in supporting wound healing. A hypothermically stored amniotic membrane (HSAM) was developed using a proprietary process to allow for the retention of the extracellular matrix (ECM), viable cells, and key proteins. To evaluate its utility, we characterized the HSAM and compared it to a native unprocessed amniotic membrane (uAM) and a dehydrated amniotic membrane (dAM), as well as assessing the functionality of the HSAM as a scaffold to promote cell growth.
View Article and Find Full Text PDFPlacental membranes have been widely studied and used clinically for wound care applications, but there is limited published information on the benefits of using the chorion membrane. The chorion membrane represents a promising source of placental-derived tissue to support wound healing, with its native composition of extracellular matrix (ECM) proteins and key regulatory proteins. This study examined the impact of hypothermic storage on the structure of chorion membrane, ECM content, and response to degradation in vitro.
View Article and Find Full Text PDFTissue-engineered skin constructs, including bi-layered living cellular constructs (BLCC) used in the treatment of chronic wounds, are structurally/functionally complex. While some work has been performed to understand their mechanisms, the totality of how BLCC may function in wound healing remains unknown. To this end, we have developed a delayed wound healing model to test BLCC cellular and molecular mechanisms of action.
View Article and Find Full Text PDFGLI1 is a transcriptional effector at the terminal end of the Hedgehog signaling (Hh) pathway and is tightly regulated during embryonic development and tissue patterning/differentiation. GLI1 has low-level expression in differentiated tissues, however, in certain cancers, aberrant activation of GLI1 has been linked to the promotion of numerous hallmarks of cancer, such as proliferation, survival, angiogenesis, metastasis, metabolic rewiring, and chemotherapeutic resistance. All of these are driven, in part, by GLI1's role in regulating cell cycle, DNA replication and DNA damage repair processes.
View Article and Find Full Text PDFResistance to radiation and chemotherapy in colorectal cancer (CRC) patients contribute significantly to refractory disease and disease progression. Herein, we provide mechanistic rationale for acquired or inherent chemotherapeutic resistance to the anti-tumor effects of 5-fluorouracil (5-FU) that is linked to oncogenic GLI1 transcription activity and NBS1 overexpression. Patients with high levels of GLI1 also expressed high levels of NBS1.
View Article and Find Full Text PDFGenome-wide association studies (GWAS) and functional genomic analyses have implicated several ITGAM (CD11b) single-nucleotide polymorphisms (SNPs) in the development of SLE and other disorders. ITGAM encodes the α chain of the β integrin Mac-1, a receptor that plays important roles in myeloid cell functions. The ITGAM SNP rs1143679, which results in an arginine to histidine change at amino acid position 77 of the CD11b protein, has been shown to reduce binding to several ligands and to alter Mac-1-mediated cellular response in vitro.
View Article and Find Full Text PDFCNTO 530 is an erythropoietin receptor agonist MIMETIBODYTM construct. CNTO 530 has been shown to be active in a number of rodent models of acquired anemia (e.g.
View Article and Find Full Text PDF