Publications by authors named "Justin A Varholick"

Stroke is a major cause of disability for adults over 40 years of age. While research into animal models has prioritized treatments aimed at diminishing post-stroke damage, no studies have investigated the response to a severe stroke injury in a highly regenerative adult mammal. Here we investigate the effects of transient ischemia on adult spiny mice, Acomys cahirinus, due to their ability to regenerate multiple tissues without scarring.

View Article and Find Full Text PDF

The African spiny mouse (Acomys cahirinus) is a unique mammalian model of tissue regeneration, regenerating 4 mm ear-hole punches with cartilage, adipocytes, hair follicles, and muscle. However, the time to regenerate ear tissue varies from 20 to 90 days and muscle regeneration is inconsistent. Some report that older spiny mice have delayed regeneration without investigation on the regenerative capacity of muscle.

View Article and Find Full Text PDF

Bite wounds due to aggression in male laboratory mice () are a major welfare concern, often leading to attrition, chronic activation of the innate immune system, and significant impacts on the experimental results derived from the use of these animals as models. Bite wounding within the home-cage of spiny mice ()-a valuable research model for wound healing and menstruation-is poorly characterized. While we have anecdotally observed frequent bite wounding in , the frequency of aggression within the home-cage, the severity of the bite wounds, and the types of dominance structures remain unstudied.

View Article and Find Full Text PDF

Social dominance status (e.g., dominant or subordinate) is often associated with individual differences in behavior and physiology but is largely neglected in experimental designs and statistical analysis plans in biomedical animal research.

View Article and Find Full Text PDF

The spiny mouse (Acomys species) has emerged as an exciting research organism due to its remarkable ability to undergo scarless regeneration of skin wounds and ear punches. Excitingly, Acomys species demonstrate scar-free healing in a wide-range of tissues beyond the skin. In this perspective article, we discuss published findings from a variety of tissues to highlight how this emerging research organism could shed light on numerous clinically relevant human diseases.

View Article and Find Full Text PDF

The spiny mouse, spp., is a recently described model organism for regeneration studies. For a mammal, it displays surprising powers of regeneration because it does not fibrose (i.

View Article and Find Full Text PDF

A tacit assumption in laboratory animal research is that animals housed within the same cage or pen are phenotypically more similar than animals from different cages or pens, due to their shared housing environment. This assumption drives experimental design, randomization schemes, and statistical analysis plans, while neglecting social context. Here, we examined whether a domain of social context-social dominance-accounted for more phenotypic variation in mice than cage-identity.

View Article and Find Full Text PDF
Article Synopsis
  • Laboratory rodent housing focuses on economics, ergonomics, hygiene, and standardization, leading to environments that limit natural behaviors and affect animal welfare negatively.
  • Research involved varying environmental enrichment for mice across four levels to assess impacts on behavior, anxiety, growth, stress physiology, brain function, and emotional health.
  • Results indicated that more enriched housing significantly improved welfare, although varying responses across different mouse strains made broad recommendations challenging.
View Article and Find Full Text PDF

The laboratory mouse is the most prevalent animal used in experimental procedures in the biomedical and behavioural sciences. Yet, many scientists fail to consider the animals' social context. Within a cage, mice may differ in their behaviour and physiology depending on their dominance relationships.

View Article and Find Full Text PDF

We studied how space allowance affects measures of animal welfare in mice by systematically varying group size and cage type across three levels each in both males and females of two strains of mice (C57BL/6ByJ and BALB/cByJ; n = 216 cages, a total of 1152 mice). This allowed us to disentangle the effects of total floor area, group size, stocking density, and individual space allocation on a broad range of measures of welfare, including growth (food and water intake, body mass); stress physiology (glucocorticoid metabolites in faecal boli); emotionality (open field behaviour); brain function (recurrent perseveration in a two-choice guessing task); and home-cage behaviour (activity, stereotypic behaviour). While increasing group size was associated with a decrease in food and water intake in general, and more specifically with increased attrition due to escalated aggression in male BALB mice, no other consistent effects of any aspect of space allowance were found with respect to the measures studied here.

View Article and Find Full Text PDF

Exposure to chronic stress is associated with an increased incidence of neuropsychiatric dysfunction. The current study evaluated two competing hypotheses, the cumulative stress and the match/mismatch hypothesis of neuropsychiatric dysfunction, using two paradigms relating to exposure to "stress": pre-weaning maternal separation and post-weaning isolation-housing. C57BL/6 offspring were reared under four conditions: typical animal facility rearing (AFR, control), early handling (EH, daily 15 min separation from dam), maternal separation (MS, daily 4 hr separation from dam), and maternal and peer separation (MPS, daily 4 hr separation from dam and from littermates).

View Article and Find Full Text PDF