Publications by authors named "Justin A Ledogar"

Australopiths, a group of hominins from the Plio-Pleistocene of Africa, are characterized by derived traits in their crania hypothesized to strengthen the facial skeleton against feeding loads and increase the efficiency of bite force production. The crania of robust australopiths are further thought to be stronger and more efficient than those of gracile australopiths. Results of prior mechanical analyses have been broadly consistent with this hypothesis, but here we show that the predictions of the hypothesis with respect to mechanical strength are not met: some gracile australopith crania are as strong as that of a robust australopith, and the strength of gracile australopith crania overlaps substantially with that of chimpanzee crania.

View Article and Find Full Text PDF

is a small-bodied hominin from Flores, Indonesia, that exhibits plesiomorphic dentognathic features, including large premolars and a robust mandible, aspects of which have been considered australopith-like. However, relative to australopith species, exhibits reduced molar size and a cranium with diminutive midfacial dimensions similar to those of later , suggesting a reduction in the frequency of forceful biting behaviours. Our study uses finite-element analysis to examine the feeding biomechanics of the cranium.

View Article and Find Full Text PDF

Paranthropus robustus is a small-brained extinct hominin from South Africa characterized by derived, robust craniodental morphology. The most complete known skull of this species is DNH 7 from Drimolen Main Quarry, which differs from P. robustus specimens recovered elsewhere in ways attributed to sexual dimorphism.

View Article and Find Full Text PDF

Objectives: The basicranium and face are two integrated bony structures displaying great morphological diversity across primates. Previous studies in hominids determined that the basicranium is composed of two independent modules: the midline basicranium, mostly influenced by brain size, and the lateral basicranium, predominantly associated with facial shape. To better assess how morphological integration impacts the evolution of primate cranial shape diversity, we test to determine whether the relationships found in hominids are retained across the order.

View Article and Find Full Text PDF

The biology of the American horseshoe crab, , is well documented-including its dietary habits, particularly the ability to crush shell with gnathobasic walking appendages-but virtually nothing is known about the feeding biomechanics of this iconic arthropod. is also considered the archetypal functional analogue of various extinct groups with serial gnathobasic appendages, including eurypterids, trilobites and other early arthropods, especially from the mid-Cambrian (508 Myr) Burgess Shale of Canada. Exceptionally preserved specimens of show evidence suggestive of durophagous (shell-crushing) tendencies-including thick gnathobasic spine cuticle and shelly gut contents-but the masticatory capabilities of this fossil species have yet to be compared with modern durophagous arthropods.

View Article and Find Full Text PDF

Increasing body size is accompanied by facial elongation across a number of mammalian taxa. This trend forms the basis of a proposed evolutionary rule, cranial evolutionary allometry (CREA). However, facial length has also been widely associated with the varying mechanical resistance of foods.

View Article and Find Full Text PDF

Three adaptive hypotheses have been forwarded to explain the distinctive Neanderthal face: (i) an improved ability to accommodate high anterior bite forces, (ii) more effective conditioning of cold and/or dry air and, (iii) adaptation to facilitate greater ventilatory demands. We test these hypotheses using three-dimensional models of Neanderthals, modern humans, and a close outgroup (), applying finite-element analysis (FEA) and computational fluid dynamics (CFD). This is the most comprehensive application of either approach applied to date and the first to include both.

View Article and Find Full Text PDF

The basicranium and facial skeleton are two integrated structures displaying great morphological diversity across primates. Previous studies focusing on limited taxonomic samples have demonstrated that morphological integration has a significant impact on the evolution of these structures. However, this influence is still poorly understood.

View Article and Find Full Text PDF

We analyzed feeding biomechanics in pitheciine monkeys (Pithecia, Chiropotes, Cacajao), a clade that specializes on hard-husked unripe fruit (sclerocarpy) and resistant seeds (seed predation). We tested the hypothesis that pitheciine crania are well-suited to generate and withstand forceful canine and molar biting, with the prediction that they generate bite forces more efficiently and better resist masticatory strains than the closely-related Callicebus, which does not specialize on unripe fruits and/or seeds. We also tested the hypothesis that Callicebus-Pithecia-Chiropotes-Cacajao represent a morphocline of increasing sclerocarpic specialization with respect to biting leverage and craniofacial strength, consistent with anterior dental morphology.

View Article and Find Full Text PDF
Article Synopsis
  • The position of the foramen magnum in hominins has evolved to be more forward-facing, which has been linked to the ability to walk on two legs (bipedalism), but the exact relationship is still not fully understood.
  • Recent studies show a correlation between foramen magnum positioning and bipedalism across various mammal species, including primates and rodents.
  • The current research finds that while certain ratios can distinguish between walking and non-walking species, only ratios based on basicranial structures effectively differentiate extinct hominins from modern apes, suggesting future studies should focus primarily on these structures for better insights into bipedalism.
View Article and Find Full Text PDF

Australopiths exhibit a number of derived facial features that are thought to strengthen the face against high and/or repetitive loads associated with a diet that included mechanically challenging foods. Here, we use finite element analysis (FEA) to test hypotheses related to the purported strengthening role of the zygomatic root and "anterior pillar" in australopiths. We modified our previously constructed models of Sts 5 (Australopithecus africanus) and MH1 (A.

View Article and Find Full Text PDF

The craniofacial skeleton is often described in the clinical literature as being comprised of vertical bony pillars, which transmit forces from the toothrow to the neurocranium as axial compressive stresses, reinforced transversely by buttresses. Here, we review the literature on bony microarchitecture, in vivo bone strain, and finite-element modeling of the facial skeleton of humans and nonhuman primates to address questions regarding the structural and functional existence of facial pillars and buttresses. Available bone material properties data do not support the existence of pillars and buttresses in humans or Sapajus apella.

View Article and Find Full Text PDF

The internal and external anatomy of the primate zygoma is central to orofacial function, health, and disease. The importance of variation in its gross morphology across extinct and extant primate forms has been established using finite element analysis, but its internal structure has yet to be explored. In this study, µCT is used to characterize trabecular bone morphometry in two separate regions of the zygoma of humans and Pan.

View Article and Find Full Text PDF

The evolution of the modern human (Homo sapiens) cranium is characterized by a reduction in the size of the feeding system, including reductions in the size of the facial skeleton, postcanine teeth, and the muscles involved in biting and chewing. The conventional view hypothesizes that gracilization of the human feeding system is related to a shift toward eating foods that were less mechanically challenging to consume and/or foods that were processed using tools before being ingested. This hypothesis predicts that human feeding systems should not be well-configured to produce forceful bites and that the cranium should be structurally weak.

View Article and Find Full Text PDF

Australopithecus sediba has been hypothesized to be a close relative of the genus Homo. Here we show that MH1, the type specimen of A. sediba, was not optimized to produce high molar bite force and appears to have been limited in its ability to consume foods that were mechanically challenging to eat.

View Article and Find Full Text PDF

The African Plio-Pleistocene hominins known as australopiths evolved derived craniodental features frequently interpreted as adaptations for feeding on either hard, or compliant/tough foods. Among australopiths, Paranthropus boisei is the most robust form, exhibiting traits traditionally hypothesized to produce high bite forces efficiently and strengthen the face against feeding stresses. However, recent mechanical analyses imply that P.

View Article and Find Full Text PDF

In a broad range of evolutionary studies, an understanding of intraspecific variation is needed in order to contextualize and interpret the meaning of variation between species. However, mechanical analyses of primate crania using experimental or modeling methods typically encounter logistical constraints that force them to rely on data gathered from only one or a few individuals. This results in a lack of knowledge concerning the mechanical significance of intraspecific shape variation that limits our ability to infer the significance of interspecific differences.

View Article and Find Full Text PDF

Dental topographic analysis is the quantitative assessment of shape of three-dimensional models of tooth crowns and component features. Molar topographic curvature, relief, and complexity correlate with aspects of feeding behavior in certain living primates, and have been employed to investigate dietary ecology in extant and extinct primate species. This study investigates whether dental topography correlates with diet among a diverse sample of living platyrrhines, and compares platyrrhine topography with that of prosimians.

View Article and Find Full Text PDF

Recent biomechanical analyses examining the feeding adaptations of early hominins have yielded results consistent with the hypothesis that hard foods exerted a selection pressure that influenced the evolution of australopith morphology. However, this hypothesis appears inconsistent with recent reconstructions of early hominin diet based on dental microwear and stable isotopes. Thus, it is likely that either the diets of some australopiths included a high proportion of foods these taxa were poorly adapted to consume (i.

View Article and Find Full Text PDF

Pitheciines (Pithecia, Chiropotes, and Cacajao) are a specialized clade of Neotropical seed predators that exhibit postcanine teeth with low and rounded cusps and highly crenulated occlusal surface enamel. Data on feeding ecology show that Pithecia consumes proportionally more leaves than other pitheciine species, and comparative studies demonstrate its greater molar relief and relative shearing potential. However, data on pitheciine food mechanics show that Pithecia masticates seeds with greater crushing resistance than those preferred by Chiropotes.

View Article and Find Full Text PDF

Diamond (Assembly of species communities. In: Cody ML, Diamond JM, editors. Ecology and evolution of communities.

View Article and Find Full Text PDF