Publications by authors named "Justin A Guerrero"

The intensive nutrient requirements needed to sustain T cell activation and proliferation, combined with competition for nutrients within the tumor microenvironment, raise the prospect that glucose availability may limit CAR-T cell function. Here, we seek to test the hypothesis that stable overexpression (OE) of the glucose transporter GLUT1 in primary human CAR-T cells would improve their function and antitumor potency. We observe that GLUT1OE in CAR-T cells increases glucose consumption, glycolysis, glycolytic reserve, and oxidative phosphorylation, and these effects are associated with decreased T cell exhaustion and increased Th differentiation.

View Article and Find Full Text PDF

CRISPR technologies have begun to revolutionize T cell therapies; however, conventional CRISPR-Cas9 genome-editing tools are limited in their safety, efficacy, and scope. To address these challenges, we developed multiplexed effector guide arrays (MEGA), a platform for programmable and scalable regulation of the T cell transcriptome using the RNA-guided, RNA-targeting activity of CRISPR-Cas13d. MEGA enables quantitative, reversible, and massively multiplexed gene knockdown in primary human T cells without targeting or cutting genomic DNA.

View Article and Find Full Text PDF
Article Synopsis
  • Adenosine (Ado) plays a role in suppressing immune responses in tumors, and exhausted CD8 CAR-T cells express enzymes CD39 and CD73 that contribute to Ado production.
  • Researchers attempted to improve CAR-T cell effectiveness by knocking out these enzymes or an adenosine receptor, but saw only minor improvements.
  • However, overexpressing adenosine deaminase (ADA-OE) to convert Ado to inosine (INO) notably enhanced CAR-T cell function, stemness, and metabolic reprogramming, leading to superior CAR-T products suitable for clinical use.
View Article and Find Full Text PDF

Adenosine (Ado) mediates immune suppression in the tumor microenvironment and exhausted CD8 CAR T cells mediate Ado-induced immunosuppression through CD39/73-dependent Ado production. Knockout of CD39, CD73 or A2aR had modest effects on exhausted CAR T cells, whereas overexpression of Ado deaminase (ADA), which metabolizes Ado to inosine (INO), induced stemness features and potently enhanced functionality. Similarly, and to a greater extent, exposure of CAR T cells to INO augmented CAR T cell function and induced hallmark features of T cell stemness.

View Article and Find Full Text PDF

Antibody class-switch DNA recombination (CSR) is initiated by AID-introduced DSBs in the switch (S) regions targeted for recombination, as effected by Ku70/Ku86-mediated NHEJ. Ku-deficient B cells, however, undergo (reduced) CSR through an alternative(A)-NHEJ pathway, which introduces microhomologies in S-S junctions. As microhomology-mediated end-joining requires annealing of single-strand DNA ends, we addressed the contribution of single-strand annealing factors HR Rad52 and translesion DNA polymerase θ to CSR.

View Article and Find Full Text PDF