Background: Methods for estimating relative survival are widely used in population-based cancer survival studies. These methods are based on splitting the observed (the overall) mortality into excess mortality (due to cancer) and background mortality (due to other causes, as expected in the general population). The latter is derived from life tables usually stratified by age, sex, and calendar year but not by other covariates (such as the deprivation level or the socioeconomic status) which may lack though they would influence background mortality.
View Article and Find Full Text PDFBackground: Net survival, a measure of the survival where the patients would only die from the cancer under study, may be compared between treatment groups using either "cause-specific methods", when the causes of death are known and accurate, or "population-based methods", when the causes are missing or inaccurate. The latter methods rely on the assumption that mortality due to other causes than cancer is the same as the expected mortality in the general population with same demographic characteristics derived from population life tables. This assumption may not hold in clinical trials where patients are likely to be quite different from the general population due to some criteria for patient selection.
View Article and Find Full Text PDFBackground: The reliability of spatial statistics is often put into question because real spatial variations may not be found, especially in heterogeneous areas. Our objective was to compare empirically different cluster detection methods. We assessed their ability to find spatial clusters of cancer cases and evaluated the impact of the socioeconomic status (e.
View Article and Find Full Text PDF