Objective: The objective was to better understand how people adapt multitasking behavior when circumstances in driving change and how safe versus unsafe behaviors emerge.
Background: Multitasking strategies in driving adapt to changes in the task environment, but the cognitive mechanisms of this adaptation are not well known. Missing is a unifying account to explain the joint contribution of task constraints, goals, cognitive capabilities, and beliefs about the driving environment.
This paper addresses a common challenge with computational cognitive models: identifying parameter values that are both theoretically plausible and generate predictions that match well with empirical data. While computational models can offer deep explanations of cognition, they are computationally complex and often out of reach of traditional parameter fitting methods. Weak methodology may lead to premature rejection of valid models or to acceptance of models that might otherwise be falsified.
View Article and Find Full Text PDFIn-car infotainment systems require icons that enable fluent cognitive information processing and safe interaction while driving. An important issue is how to find an optimised set of icons for different functions in terms of semantic distance. In an optimised icon set, every icon needs to be semantically as close as possible to the function it visually represents and semantically as far as possible from the other functions represented concurrently.
View Article and Find Full Text PDF