Publications by authors named "Jussi Heinonsalo"

Article Synopsis
  • Land use and agricultural practices significantly impact soil fungal communities, which in turn affect overall soil health.
  • A study examined fungal communities across different soil layers (up to 80 cm) in four types of boreal soils: organic crop rotation, conventional crop rotation, meadow, and forest.
  • Findings revealed that soil type influenced specific fungal groups, with forests showing higher beneficial fungi, meadows having more decomposing fungi, and crop rotations featuring increased plant pathogens, highlighting the need to analyze subsoils in soil health research.
View Article and Find Full Text PDF

Expanding and intensifying agriculture has led to a loss of soil carbon. As agroecosystems cover over 40% of Earth's land surface, they must be part of the solution put in action to mitigate climate change. Development of efficient management practices to maximize soil carbon retention is currently limited, in part, by a poor understanding of how plants, which input carbon to soil, and microbes, which determine its fate there, interact.

View Article and Find Full Text PDF

Boreal forests commonly suffer from nutrient deficiency due to restricted biological activity and decomposition. Biochar has been used as a promising strategy to improve soil quality, yet its impacts on forest soil microbes, particularly in cold environment, remains poorly understood. In this study, we investigated the effects of biochar, produced at different pyrolysis temperatures (500 °C and 650 °C) and applied at different amounts (0.

View Article and Find Full Text PDF

Drought is a major environmental stressor that limits seedling growth. Several studies have found that some ectomycorrhizal fungi may increase the drought tolerance of nursery-raised seedlings. However, the precise role that different ectomycorrhizal fungi species play in drought tolerance remains unclear.

View Article and Find Full Text PDF

Sequestering carbon into agricultural soils is considered as a means of mitigating climate change. We used agronomic soil test results representing c. 95% of the farmed land area in Finland to estimate the potential of the uppermost 15 cm soil layer of mineral agricultural soils to sequester organic carbon (OC) and to contribute to the mitigation of climate change.

View Article and Find Full Text PDF

Organic soil amendments are used to improve soil quality and mitigate climate change. However, their effects on soil structure, nutrient and water retention as well as greenhouse gas (GHG) emissions are still poorly understood. The purpose of this study was to determine the residual effects of a single field application of four ligneous soil amendments on soil structure and GHG emissions.

View Article and Find Full Text PDF

Biochar is considered to be a possible means of carbon sequestration to alleviate climate change. However, the dynamics of the microbial community during wood decomposition after biochar application remain poorly understood. In this study, the wood-inhabiting bacterial community composition and its potential functions during a two-year decomposition period after the addition of different amounts of biochar (0.

View Article and Find Full Text PDF

Microbial communities often possess enormous diversity, raising questions about whether this diversity drives ecosystem functioning, especially the influence of diversity on soil decomposition and respiration. Although functional redundancy is widely observed in soil microorganisms, evidence that species occupy distinct metabolic niches has also emerged. In this paper, we found that apart from the environmental variables, increases in microbial diversity, notably bacterial diversity, lead to an increase in soil C emissions.

View Article and Find Full Text PDF

The chemical quality of soil carbon (C) inputs is a major factor controlling litter decomposition and soil C dynamics. Mycorrhizal fungi constitute one of the dominant pools of soil microbial C, while their litter quality (chemical proxies of litter decomposability) is understood poorly, leading to major uncertainties in estimating soil C dynamics. We examined litter decomposability of arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungal species using samples obtained from in vitro cultivation.

View Article and Find Full Text PDF

Mollisols are globally distributed in grain-producing regions, and soil organic carbon (SOC) dynamics in mollisol regions are closely related to food security. Regional climate, land use and cover, and field management practice have massively changed since the 1980s in mollisol region in Northeast China, however, the dynamics of topsoil and profile SOC stocks and their distribution have not updated. To explore the dynamics of SOC stocks and their horizontal and vertical distributions in the 1980s-2010s, we took the mollisol region in Northeast China as an example location to conduct profile-scale soil surveys.

View Article and Find Full Text PDF

The boreal forest environment plays an important role in the global C cycle due to its high carbon storage capacity. However, relatively little is known about the forest fungal community at a regional scale in boreal forests. In the present study, we have re-analyzed the data from our previous studies and highlighted the core fungal community composition and potential functional groups in three forests dominated by Scots pine ( L.

View Article and Find Full Text PDF

Recent studies have highlighted that dead fungal mycelium represents an important fraction of soil carbon (C) and nitrogen (N) inputs and stocks. Consequently, identifying the microbial communities and the ecological factors that govern the decomposition of fungal necromass will provide critical insight into how fungal organic matter (OM) affects forest soil C and nutrient cycles. Here, we examined the microbial communities colonising fungal necromass during a multiyear decomposition experiment in a boreal forest, which included incubation bags with different mesh sizes to manipulate both plant root and microbial decomposer group access.

View Article and Find Full Text PDF

Organic matter decomposition plays a major role in the cycling of carbon (C) and nutrients in terrestrial ecosystems across the globe. Climate change accelerates the decomposition rate to potentially increase the release of greenhouse gases and further enhance global warming in the future. However, fractions of organic matter vary in turnover times and parts are stabilized in soils for longer time periods (C sequestration).

View Article and Find Full Text PDF

Fire is the most important natural disturbance in boreal forests, and it has a major role regulating the carbon (C) budget of these systems. With the expected increase in fire frequency, the greenhouse gas (GHG) budget of boreal forest soils may change. In order to understand the long-term nature of the soil-atmosphere GHG exchange after fire, we established a fire chronosequence representing successional stages at 8, 19, 34, 65, 76 and 179 years following stand-replacing fires in hemiboreal Scots pine forests in Estonia.

View Article and Find Full Text PDF

Effect of three wood-decaying fungi on decomposition of spruce wood was studied in solid-state cultivation conditions for a period of three months. Two white rot species (Trichaptum abietinum and Phlebia radiata) were challenged by a brown rot species (Fomitopsis pinicola) in varying combinations. Wood decomposition patterns as determined by mass loss, carbon to nitrogen ratio, accumulation of dissolved sugars and release of volatile organic compounds (VOCs) were observed to depend on both fungal combinations and growth time.

View Article and Find Full Text PDF

Boreal forest soils store significant amounts of carbon and are cohabited by saprotrophic and ectomycorrhizal fungi (ECM). The 'Gadgil effect' implies antagonistic interactions between saprotrophic fungi and ECM. Plant photosynthates support the competitive fitness of the ECM, and may also shape the soil bacterial communities.

View Article and Find Full Text PDF

Boreal forests are ecosystems with low nitrogen (N) availability that store globally significant amounts of carbon (C), mainly in plant biomass and soil organic matter (SOM). Although crucial for future climate change predictions, the mechanisms controlling boreal C and N pools are not well understood. Here, using a three-year field experiment, we compare SOM decomposition and stabilization in the presence of roots, with exclusion of roots but presence of fungal hyphae and with exclusion of both roots and fungal hyphae.

View Article and Find Full Text PDF

Root-colonizing fungi can form mycorrhizal or endophytic associations with plant roots, the type of association depending on the host. We investigated the differences and similarities of the fungal communities of three boreal ericoid plants and one coniferous tree, and identified the community structure of fungi utilizing photosynthates from the plants studied. The fungal communities of roots and soils of Vaccinium myrtillus, Vaccinium vitis-idaea, Calluna vulgaris and Pinus sylvestris were studied in an 18-month-long experiment where the plants were grown individually in natural substrate.

View Article and Find Full Text PDF

Fire is a major natural disturbance factor in boreal forests, and the frequency of forest fires is predicted to increase due to climate change. Nitrogen (N) is a key determinant of carbon sequestration in boreal forests because the shortage of N limits tree growth. We studied changes in N pools and fluxes, and the overall N balance across a 155-year non stand-replacing fire chronosequence in sub-arctic Pinus sylvestris forests in Finland.

View Article and Find Full Text PDF

In this study, the bacterial populations of roots and mycospheres of the boreal pine forest ericoid plants, heather (Calluna vulgaris), bilberry (Vaccinium myrtillus), and lingonberry (Vaccinium vitis-idaea), were studied by qPCR and next-generation sequencing (NGS). All bacterial communities of mycosphere soils differed from soils uncolonized by mycorrhizal mycelia. Colonization by mycorrhizal hyphae increased the total number of bacterial 16S ribosomal DNA (rDNA) gene copies in the humus but decreased the number of different bacterial operational taxonomic units (OTUs).

View Article and Find Full Text PDF

As the number of drought occurrences has been predicted to increase with increasing temperatures, it is believed that boreal forests will become particularly vulnerable to decreased growth and increased tree mortality caused by the hydraulic failure, carbon starvation and vulnerability to pests following these. Although drought-affected trees are known to have stunted growth, as well as increased allocation of carbon to roots, still not enough is known about the ways in which trees can acclimate to drought. We studied how drought stress affects belowground and aboveground carbon dynamics, as well as nitrogen uptake, in Scots pine (Pinus sylvestris L.

View Article and Find Full Text PDF

Soil microbial responses to fire are likely to change over the course of forest recovery. Investigations on long-term changes in bacterial dynamics following fire are rare. We characterized the soil bacterial communities across three different times post fire in a 2 to 152-year fire chronosequence by Illumina MiSeq sequencing, coupled with a functional gene array (GeoChip).

View Article and Find Full Text PDF

Fungal communities are important for carbon (C) transformations in boreal forests that are one of the largest C pools in terrestrial ecosystems, warranting thus further investigation of fungal community dynamics in time and space. We investigated fungal diversity and community composition seasonally and across defined soil horizons in boreal Scots pine forest in Finland using 454 pyrosequencing. We collected a total of 120 samples from five vertical soil horizons monthly from March to October; in March, under snow.

View Article and Find Full Text PDF