Macrophages can maintain gut immune homeostasis by driving clearance of infection, but also can prevent chronic inflammation and induce tissue repair. Reduced nicotinamide adenine dinucleotide (NAD) levels in macrophages have been reported to be associated with the onset of severe colitis. Given that dysregulation of gut macrophages plays a significant role in inflammatory bowel disease (IBD), they represent a potential target for novel therapies.
View Article and Find Full Text PDFAll-solid-state batteries (ASSBs) are safe, high-energy-storage systems. However, despite the progress achieved in the development of high-ionic-conductivity solid electrolytes (SEs), the power performance of ASSBs remains low because of the high interfacial impedances in composite cathodes. Therefore, understanding the interfacial factors is crucial for obtaining high power ASSBs.
View Article and Find Full Text PDFAnode-free (or lithium-metal-free) batteries with garnet-type solid-state electrolytes are considered a promising path in the development of safe and high-energy-density batteries. However, their practical implementation has been hindered by the internal strain that arises from the repeated plating and stripping of lithium metal at the interlayer between the solid electrolyte and negative electrode. Herein, we utilize the titanium nitrate nanotube architecture and a silver-carbon interlayer to mitigate the anisotropic stress caused by the recurring formation of lithium deposition layers during the cycling process.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2023
Solid-state Li-metal batteries (based on solid-state electrolytes) offer excellent safety and exhibit high potential to overcome the energy-density limitations of current Li-ion batteries, making them suitable candidates for the rapidly developing fields of electric vehicles and energy-storage systems. However, establishing close solid-solid contact is challenging, and Li-dendrite formation in solid-state electrolytes at high current densities causes fatal technical problems (due to high interfacial resistance and short-circuit failure). The Li metal/solid electrolyte interfacial properties significantly influence the kinetics of Li-metal batteries and short-circuit formation.
View Article and Find Full Text PDFLithium metal batteries (LMBs) with inorganic solid-state electrolytes are considered promising secondary battery systems because of their higher energy content than their Li-ion counterpart. However, the LMB performance remains unsatisfactory for commercialization, primarily owing to the inability of the inorganic solid-state electrolytes to hinder lithium dendrite propagation. Here, using an Ag-coated LiLaZrTaO (LLZTO) inorganic solid electrolyte in combination with a silver-carbon interlayer, we demonstrate the production of stable interfacially engineered lab-scale LMBs.
View Article and Find Full Text PDFGarnet-type LiLaZrO (LLZO) solid electrolytes (SE) demonstrates appealing ionic conductivity properties for all-solid-state lithium metal battery applications. However, LLZO (electro)chemical stability in contact with the lithium metal electrode is not satisfactory for developing practical batteries. To circumvent this issue, we report the preparation of various doped cubic-phase LLZO SEs without vacancy formation (i.
View Article and Find Full Text PDFLithium metal batteries using solid electrolytes are considered to be the next-generation lithium batteries due to their enhanced energy density and safety. However, interfacial instabilities between Li-metal and solid electrolytes limit their implementation in practical batteries. Herein, Li-metal batteries using tailored garnet-type LiLaZrO (LLZO) solid electrolytes is reported, which shows remarkable stability and energy density, meeting the lifespan requirements of commercial applications.
View Article and Find Full Text PDFGenomic instability resulting from defective DNA damage responses or repair causes several abnormalities, including progressive cerebellar ataxia, for which the molecular mechanisms are not well understood. Here, we report a new murine model of cerebellar ataxia resulting from concomitant inactivation of POLB and ATM. POLB is one of key enzymes for the repair of damaged or chemically modified bases, including methylated cytosine, but selective inactivation of Polb during neurogenesis affects only a subpopulation of cortical interneurons despite the accumulation of DNA damage throughout the brain.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2018
Defects in DNA damage response or repair mechanisms during neurogenesis result in genomic instability, which is causative for several neural defects. These include brain tumors, particularly medulloblastoma, which occurs in the cerebellum with a high incidence in children. We generated an animal model with defective base excision repair during brain development through selective inactivation of DNA polymerase β (Polb) in neuroprogenitor cells.
View Article and Find Full Text PDFHistochem Cell Biol
November 2017
Maintenance of genomic integrity is one of the critical features for proper neurodevelopment and inhibition of neurological diseases. The signals from both ATM and ATR to TP53 are well-known mechanisms to remove neural cells with DNA damage during neurogenesis. Here we examined the involvement of Atm and Atr in genomic instability due to Terf2 inactivation during mouse brain development.
View Article and Find Full Text PDFThe electrochemical cycling performance of vanadium oxide nanotubes (VO-NTs) for Mg-ion insertion/extraction was investigated in acetonitrile (AN) and tetramethylsilane (TMS)-ethyl acetate (EA) electrolytes with Mg(ClO) salt. When cycled in TMS-EA solution, the VO-NT exhibited a higher capacity retention than when cycled in AN solution. The significant degradation of capacity in AN solution resulted from increased charge-transfer resistance caused by the reaction products of the electrolyte during cycling.
View Article and Find Full Text PDFThe phase transition of layered manganese oxides to spinel phases is a well-known phenomenon in rechargeable batteries and is the main origin of the capacity fading in these materials. This spontaneous phase transition is associated with the intrinsic properties of manganese, such as its size, preferred crystal positions, and reaction characteristics, and it is therefore very difficult to avoid. The introduction of crystal water by an electrochemical process enables the inverse phase transition from spinel to a layered Birnessite structure.
View Article and Find Full Text PDFRechargeable magnesium batteries have lately received great attention for large-scale energy storage systems due to their high volumetric capacities, low materials cost, and safe characteristic. However, the bivalency of Mg(2+) ions has made it challenging to find cathode materials operating at high voltages with decent (de)intercalation kinetics. In an effort to overcome this challenge, we adopt an unconventional approach of engaging crystal water in the layered structure of Birnessite MnO2 because the crystal water can effectively screen electrostatic interactions between Mg(2+) ions and the host anions.
View Article and Find Full Text PDFObjective: This study focused on the ability of aqueous anti-volatile-sulfur-compound (VSC) solutions to eliminate gaseous VSCs by direct contact in a sealed space to describe possible mode of action of anti-VSC agents.
Materials And Methods: Twenty milliliters of each experimental solution, 0.16% sodium chlorite, 0.