Subsequently to the publication of the above article, an interested reader drew to the authors' attention that two pairs of the culture plate images in Fig. 4A-C on p. 60 appeared to be the same, although the images were shown in different orientations; moreover, the 'NC/0 and DEX+miR132' and 'DEX and miR132' pairings of images in the scratch-wound assay experiments shown in Fig.
View Article and Find Full Text PDFGlucocorticoids (GCs) are widely used in tumor therapy to reduce tumor growth, inflammation, edema, and other side effects. Controversially, GCs may also cause the progression of highly aggressive pancreatic ductal adenocarcinoma (PDAC). Because microRNA (miR) and autophagy signaling support the invasive growth of PDAC, we asked whether these mechanisms may be targeted by GCs.
View Article and Find Full Text PDFSeveral collagen subtypes are involved in pancreatic ductal adenocarcinoma (PDAC) desmoplasia, which constrains therapeutic efficacy. We evaluated collagen type VIII alpha 1 chain (COL8A1), whose function in PDAC is currently unknown. We identified COL8A1 expression in 7 examined PDAC cell lines by microarray analysis, western blotting, and RT‒qPCR.
View Article and Find Full Text PDFSilver has been in clinical use since ancient times and silver nanoparticles (AgNPs) have attracted attention in cancer therapy. We investigated the mechanisms by which AgNPs inhibit pancreatic ductal adenocarcinoma (PDAC). AgNPs were synthesized and 3 human PDAC and 2 nonmalignant primary cell lines were treated with AgNPs.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is among the leading causes of cancer mortality, and new therapeutic options are urgently needed. Long noncoding RNA H19 (H19) is known to promote PDAC progression, but the downstream genes of H19 are largely unknown. Five PDAC cell lines, nonmalignant pancreatic cells, TCGA, GEO-derived pancreatic tissues (malignant, n=413; nonmalignant, n=234), a pancreatic tissue array (n=96), and pancreatic tissues from our clinic (malignant, n=20; nonmalignant, n=20) were examined by a gene array, RT-qPCR, Western blotting, MTT, colony formation, wound-healing, siRNA-mediated gene silencing, bioinformatics, xenotransplantation, and immunohistochemistry assays.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2021
Broccoli-derived isothiocyanate sulforaphane inhibits inflammation and cancer. Sulforaphane may support healthy aging, but the underlying detailed mechanisms are unclear. We used the nematode model to address this question.
View Article and Find Full Text PDFSilver nanoparticles (AgNPs) have attracted attention in cancer therapy and might support the treatment of pancreatic ductal adenocarcinoma (PDAC). Silver is in clinical use in wound dressings, catheters, stents and implants. However, the side effects of systemic AgNP treatment due to silver accumulation limit its therapeutic application.
View Article and Find Full Text PDFBioelectrochemistry
October 2021
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with a poor prognosis. More effective treatment options are urgently needed. The use of physical and weak alternating electric fields (TTFields) can inhibit cell division of PDAC carcinoma and is currently being investigated in clinical trials.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is extremely malignant and the therapeutic options available usually have little impact on survival. Great hope is placed on new therapeutic targets, including long noncoding RNAs (lncRNAs), and on the development of new drugs, based on e.g.
View Article and Find Full Text PDFFood-derived plant microRNAs are suggested to control human genes by "cross-kingdom" regulation. We examined microRNAs in sprouts from , known as broccoletti, which are widely used as sulforaphane supplements, and assessed their influence on pancreatic cancer. RNA was isolated from 4-day-old sprouts, followed by deep sequencing and bioinformatic analysis.
View Article and Find Full Text PDFThe therapy resistance of pancreatic cancer is associated with the loss of gap junction intercellular communication and connexin 43 expression. The broccoli isothiocyanate sulforaphane restored these features and therapy sensitivity. We investigated whether microRNA signaling is involved.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDA) is one of the most lethal tumors, with poor therapeutic options in the advanced state. The broccoli-derived anti-inflammatory agent sulforaphane was shown to inhibit the progression of pancreatic cancer and other tumor entities. We examined the involvement of pancreatic cancer cell lines were evaluated by microRNA and gene expression arrays, bioinformatics, analysis, qRT-PCR, western blotting, immunohistochemistry, hybridization, self-renewal and differentiation assays, and xenograft studies.
View Article and Find Full Text PDFNF-κB contributes to the aggressiveness of pancreatic ductal adenocarcinoma (PDA), which is counteracted by the bioactive agent sulforaphane. We investigated sulforaphane-induced microRNA signaling and its influence on progression features. Using established cell lines, microRNA and gene arrays, we predicted miR-365a as the top candidate for the sulforaphane-induced inhibition of the NF-κB subunit c-Rel.
View Article and Find Full Text PDFGlucocorticoids (GCs) such as dexamethasone (DEX) are administered as cancer co‑treatment for palliative purposes due to their pro‑apoptotic effects in lymphoid cancer and limited side effects associated with cancer growth and chemotherapy. However, there is emerging evidence that GCs induce therapy resistance in most epithelial tumors. Our recent data reveal that DEX promotes the progression of pancreatic ductal adenocarcinoma (PDA).
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDA) has poor therapeutic options. Recent patient studies indicate that cholesterol-lowering statins have anti-tumor capacities. We examined several established and primary PDA and normal cell lines as well as PDA patient tissues (n = 68).
View Article and Find Full Text PDFIntraductal papillary mucinous neoplasm (IPMN) of the pancreas has a high risk of progressing to invasive pancreatic ductal adenocarcinoma (PDA), but experimental models for IPMN are largely missing. New experimental systems for the molecular characterization of IPMN and for personalized prognosis and treatment options for IPMN are urgently needed. We analyzed the potential use of fertilized chicken eggs for the culture of freshly resected IPMN tissue.
View Article and Find Full Text PDFGlucocorticoids such as dexamethasone are widely co-prescribed with cytotoxic therapy because of their proapoptotic effects in lymphoid cancer, reduction of inflammation and edema and additional benefits. Concerns about glucocorticoid-induced therapy resistance, enhanced metastasis and reduced survival of patients are largely not considered. We analyzed dexamethasone-induced tumor progression in three established and one primary human pancreatic ductal adenocarcinoma (PDA) cell lines and in PDA tissue from patients and xenografts by FACS and western blot analysis, immunohistochemistry, MTT and wound assay, colony and spheroid formation, EMSA and in vivo tumor growth and metastasis of tumor xenografts on chicken eggs and mice.
View Article and Find Full Text PDFResistance to first-line chemotherapies like gemcitabine contributes to high disease lethality in pancreatic cancer. By microarray and qRT-PCR, we observed significant downregulation of microRNA-210 in gemcitabine-resistant cells. The overexpression of microRNA-210 was toxic to gemcitabine-resistant cells and enhanced gemcitabine sensitivity.
View Article and Find Full Text PDFPancreatic Ductal Adenocarcinoma (PDA) is a highly malignant tumor with poor prognosis. MicroRNAs (miRs) may offer novel therapeutic approaches to treatment. The polyphenol quercetin, present in many fruits and vegetables, possesses anti-carcinogenic properties.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDA) is among the most lethal malignancies and resistance to chemotherapy prevents the therapeutic outcome. MicroRNAs provide a novel therapeutic strategy. Here, the established and primary human PDA cell lines PANC-1, AsPC-1, MIA-PaCa2, AsanPaCa, BxPC-3 and three gemcitabine-resistant subclones were examined.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDA) is one of the most aggressive malignancies and has poor therapeutic options. We evaluated improved oncolytic adenoviruses (OAds), in which the adenoviral gene E1B19K was deleted or a TRAIL transgene was inserted. Bone marrow mesenchymal stromal cells (MSCs) served as carriers for protected and tumor-specific virus transfers.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDA) is characterized by an extremely poor prognosis. An inflammatory microenvironment triggers the pronounced desmoplasia, the selection of cancer stem-like cells (CSCs) and therapy resistance. The anti-inflammatory drug aspirin is suggested to lower the risk for PDA and to improve the treatment, although available results are conflicting and the effect of aspirin to CSC characteristics and desmoplasia in PDA has not yet been investigated.
View Article and Find Full Text PDFAccording to the cancer stem cell (CSC) hypothesis, the aggressive growth and early metastasis of pancreatic ductal adenocarcinoma (PDA) is due to the activity of CSCs, which are not targeted by current therapies. Otto Warburg suggested that the growth of cancer cells is driven by a high glucose metabolism. Here, we investigated whether glycolysis inhibition targets CSCs and thus may enhance therapeutic efficacy.
View Article and Find Full Text PDF