Isocyanides have long been known as versatile chemical reagents in organic synthesis. Their ambivalent nature also allows them to function as a CO-substitute in palladium-catalyzed cross couplings. Over the past decades, isocyanides have emerged as practical and versatile C building blocks, whose inherent -substitution allows for the rapid incorporation of nitrogeneous fragments in a wide variety of products.
View Article and Find Full Text PDFHerein, we report a novel copper-catalyzed imidoylative cross-coupling/cyclocondensation reaction between 2-isocyanobenzoates and amines efficiently producing quinazolin-4-ones. The reaction utilizes Cu(II) acetate as an environmentally benign catalyst in combination with a mild base and proceeds well in anisole, a recommended, sustainable solvent. Additionally, the reaction does not require dry conditions or inert atmospheres for optimal performance.
View Article and Find Full Text PDFA robust nickel-catalyzed oxidative isocyanide insertion/C-H amination by reaction of readily available -uracil-amidines with isocyanides affording polysubstituted pyrimidouracils has been reported. The reaction proceeds in moderate to quantitative yield, under mild conditions (i.e.
View Article and Find Full Text PDFIsocyanides are diverse C building blocks considering their potential to react with nucleophiles, electrophiles, and radicals. Therefore, perhaps not surprisingly, isocyanides are highly valuable as inputs for multicomponent reactions (MCRs) and other one-pot cascade processes. In the field of organometallic chemistry, isocyanides typically serve as ligands for transition metals.
View Article and Find Full Text PDFWe developed a one-pot, two-stage synthetic route to substituted 4-aminoquinolines involving an imidoylative Sonogashira coupling followed by acid-mediated cyclization. This three-component reaction affords pharmaceutically valuable 4-aminoquinolines in a one-pot procedure from readily available starting materials. The reaction tolerates various substituents on the arene as well as the use of secondary and even primary isocyanides.
View Article and Find Full Text PDFHerein, a two-step MCR-oxidation methodology accessing decorated 2° α-ketoamides and α-ketotetrazoles is described via a catalytic copper(i)-mediated C-N oxidation/acidic hydrolysis of Ugi-three-component and Ugi-azide reaction products. The ability to install diversity from aldehyde and isocyanide synthons allows rapid complexity generation. Of note, (1) 2° α-ketoamides are traditionally difficult to access and more so reminiscent of the endogenous peptide bonds.
View Article and Find Full Text PDF