We present a fast and efficient approach to predict the wettability and spreading of liquids on polymeric substrates. First, a molecular dynamics parameterization is proposed for the calculation of the solubility parameter for 74 compounds including surfactants typically used in inkjet printing. Then, we introduce a molecular geometrical factor to relate the solubility parameter to the surface tension, obtaining estimates in remarkable agreement with experiments.
View Article and Find Full Text PDFWe performed replica exchange molecular dynamics and forward flux sampling simulations of hexapeptide VQIINK and VQIVYK systems, also known as, respectively, fragments PHF6* and PHF6 from the tau protein. Being a part of the microtubule binding region, these fragments are known to be aggregation prone, and at least one of them is a prerequisite for fibril formation of the tau protein. Using a coarse-grained force field, we establish the phase behavior of both fragments, and investigate the nucleation kinetics for the conversion into a β-sheet fibril.
View Article and Find Full Text PDFParticles with directional interactions are promising building blocks for new functional materials and may serve as models for biological structures. Mutually attractive nanoparticles that are deformable owing to flexible surface groups, for example, may spontaneously order themselves into strings, sheets and large vesicles. Furthermore, anisotropic colloids with attractive patches can self-assemble into open lattices and the colloidal equivalents of molecules and micelles.
View Article and Find Full Text PDFJ Phys Chem B
October 2015
The primary nucleation step in amyloid fibril formation can, depending on the nature of peptide sequence, occur in one step, straight from a dilute solution, or in multiple steps, via oligomers or disordered aggregates. The precise kinetic pathways of these processes are poorly understood. Employing forward flux sampling and a midresolution coarse-grained force field, we analyzed the reactive pathways from the solvated state to the fibril nucleus for a system of 12 amyloidogenic peptides.
View Article and Find Full Text PDFPhys Chem Chem Phys
April 2015
Amyloid fibril formation is believed to be a nucleation-controlled process. Depending on the nature of peptide sequence, fibril nucleation can occur in one step, straight from a dilute solution, or in multiple steps via oligomers or disordered aggregates. What determines this process is poorly understood.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
July 2013
We report a numerical study of a simple, modified Asakura-Oosawa model for nanoparticles that are isotropically grafted with polymer chains. We perform canonical and grand-canonical Monte Carlo simulations to establish a qualitative morphology diagram, as well as quantitative phase diagrams. The morphology diagram qualitatively reproduces experimental observations and theoretical approaches employing more complex models.
View Article and Find Full Text PDF