Vascular endothelial cell growth factor-C (VEGF-C) is a member of the VEGF family and plays a role in various biological activities. VEGF-C enhances proliferation and migration of lymphatic endothelial cells and vascular endothelial cells through VEGF receptor 2 (VEGFR2) and/or receptor 3 (VEGFR3), and thereby induces lymphangiogenesis or angiogenesis. However, it remains unclear whether VEGF-C promotes the migration of mesenchymal stem cells (MSCs).
View Article and Find Full Text PDFBackground: The prediction of postoperative complications is important for oral and maxillofacial surgeons. We herein aimed to evaluate the efficacy of the Estimation of Physiologic Ability and Surgical Stress (E-PASS) and Acute Physiology, Age, and Chronic Health Evaluation (APACHE) II scoring systems to predict postoperative complications in patients undergoing oral and maxillofacial surgery.
Methods: Thirty patients (22 males, 8 females; mean age: 65.
Glycolipids are the major constituent of the thylakoid membrane of higher plants and have a variety of biological and pharmacological activities. However, anti-inflammatory effects of glycolipids on vascular endothelial cells have not been elucidated. Here, we investigated the effect of glycolipids extracted from spinach on lipopolysaccharides (LPS)-induced endothelial inflammation and evaluated the underlying molecular mechanisms.
View Article and Find Full Text PDFVascular endothelial cell growth factor C (VEGF-C) is a member of the VEGF family and plays a role in a variety of biological activities including lymphangiogenesis, angiogenesis, and neurogenesis through VEGF receptor 2 (VEGFR2) and 3 (VEGFR3). However, it has not been elucidated whether VEGF-C promotes osteogenic differentiation. Herein, we investigated the effects of VEGF-C on osteogenic differentiation in human mesenchymal stem cells (MSCs) and evaluated the underlying molecular mechanisms.
View Article and Find Full Text PDF