Neuropathic pain is a common health problem resulting in exacerbated response to noxious and non noxious stimuli, as well as impaired emotional and cognitive responses. Unfortunately, neuropathic pain is also one of the most difficult pain syndromes to manage, highlighting the importance of better understanding the brain regions and neuromodulatory mechanisms involved in its regulation. Among the many interconnected brain areas which process pain, the amygdala is known to play an important role in the integration of sensory and emotional pain signals.
View Article and Find Full Text PDFPsychostimulant drugs, such as cocaine, d-amphetamine and methylphenidate, alter a wide range of behaviors including locomotor activity and somatosensory perception. These altered behaviors are accompanied by the activation of specific neuronal populations within reward-, emotion- and locomotion-related circuits. However, whether such regulation occurs at the level of the spinal cord, a key node for neural circuits integrating and coordinating sensory and motor functions has never been addressed.
View Article and Find Full Text PDFFront Synaptic Neurosci
April 2020
Epileptogenesis is the gradual process responsible for converting a healthy brain into an epileptic brain. This process can be triggered by a wide range of factors, including brain injury or tumors, infections, and status epilepticus. Epileptogenesis results in aberrant synaptic plasticity, neuroinflammation and seizure-induced cell death.
View Article and Find Full Text PDF