Computational models of musculoskeletal systems are essential tools for understanding how muscles, tendons, bones, and actuation signals generate motion. In particular, the OpenSim family of models has facilitated a wide range of studies on diverse human motions, clinical studies of gait, and even non-human locomotion. However, biological structures with many joints, such as fingers, necks, tails, and spines, have been a longstanding challenge to the OpenSim modeling community, especially because these structures comprise numerous bones and are frequently actuated by extrinsic muscles that span multiple joints-often more than three-and act through a complex network of branching tendons.
View Article and Find Full Text PDFOver the past two centuries, mammalian chewing and related anatomical features have been among the most discussed of all vertebrate evolutionary innovations. Chief among these features are two characters: the dentary-only mandible, and the tribosphenic molar with its triangulated upper cusps and lower talonid basin. The flexible mandibular joint and the unfused symphysis of ancestral mammals-in combination with transformations of the adductor musculature and palate-are thought to have permitted greater mobility of each lower jaw, or hemimandible.
View Article and Find Full Text PDFAnomodontia was the most successful herbivorous clade of the mammalian stem lineage (non-mammalian synapsids) during the late Permian and Early Triassic. Among anomodonts, Dicynodontia stands apart because of the presence of an osseous beak that shows evidence of the insertion of a cornified sheath, the ramphotheca. In this study, fourteen anomodont specimens were microCT-scanned and their trigeminal canals reconstructed digitally to understand the origin and evolution of trigeminal nerve innervation of the ramphotheca.
View Article and Find Full Text PDF